当前位置: 首页 > news >正文

你了解哪些Java限流算法?

大家好,我是锋哥。今天分享关于【你了解哪些Java限流算法?】面试题。希望对大家有帮助;

你了解哪些Java限流算法?

1000道 互联网大厂Java工程师 精选面试题-Java资源分享网

Java 中常用的限流算法主要有以下几种,它们广泛应用于处理流量控制、API请求限制等场景:

1. 令牌桶算法(Token Bucket)

令牌桶算法是限流中最常用的一种方法。其基本思想是:

  • 系统按固定速率向桶中放入令牌,每次请求需要消耗一个令牌。
  • 如果桶中没有足够的令牌,请求会被拒绝或者被延迟处理。
  • 如果令牌桶的容量大于实际请求速率,系统允许突发流量(超过速率的流量)。

特点

  • 支持突发流量。
  • 限制速率比较平滑,可以动态调整。

实现方式

  • 使用一个线程定时向桶中放入令牌。
  • 请求到达时,检查令牌桶是否有令牌。
public class TokenBucket {private final long capacity;private final long refillInterval;private long availableTokens;private long lastRefillTime;public TokenBucket(long capacity, long refillInterval) {this.capacity = capacity;this.refillInterval = refillInterval;this.availableTokens = capacity;this.lastRefillTime = System.currentTimeMillis();}public synchronized boolean acquire() {long now = System.currentTimeMillis();long elapsedTime = now - lastRefillTime;long tokensToAdd = elapsedTime / refillInterval;availableTokens = Math.min(capacity, availableTokens + tokensToAdd);lastRefillTime = now;if (availableTokens > 0) {availableTokens--;return true;}return false;}
}

2. 漏斗算法(Leaky Bucket)

漏斗算法通过一个固定容量的桶来控制请求速率。桶中有一定的容量,固定的速率会“漏掉”桶中的水,水(请求)按一定速率流出。

特点

  • 控制流量的输出速率平稳。
  • 不允许突发流量,所有流量都按固定速率流出。

实现方式

  • 每次请求到来时,检查桶中的水量(请求数),如果桶已经满了,就拒绝请求。
  • 否则允许请求进入桶,按固定速率流出。
public class LeakyBucket {private final long capacity;private final long leakRate;private long waterLevel;private long lastLeakTime;public LeakyBucket(long capacity, long leakRate) {this.capacity = capacity;this.leakRate = leakRate;this.waterLevel = 0;this.lastLeakTime = System.currentTimeMillis();}public synchronized boolean acquire() {long now = System.currentTimeMillis();long elapsedTime = now - lastLeakTime;long leakedWater = elapsedTime / leakRate;waterLevel = Math.max(0, waterLevel - leakedWater);lastLeakTime = now;if (waterLevel < capacity) {waterLevel++;return true;}return false;}
}

3. 计数窗口算法(Fixed Window Counter)

计数窗口算法是最简单的一种限流算法,它将时间划分为多个固定的时间窗口,每个时间窗口内可以接受一定数量的请求。

特点

  • 简单易理解。
  • 容易受到“窗口切分”的影响,可能会在窗口的边界出现突发流量。

实现方式

  • 每个窗口内计数器限制请求次数。
  • 请求到来时,检查当前时间窗口是否超过了限制。
public class FixedWindowCounter {private final int limit;private int count;private long lastWindowStartTime;public FixedWindowCounter(int limit) {this.limit = limit;this.count = 0;this.lastWindowStartTime = System.currentTimeMillis();}public synchronized boolean acquire() {long currentTime = System.currentTimeMillis();if (currentTime - lastWindowStartTime >= 1000) { // New windowcount = 0;lastWindowStartTime = currentTime;}if (count < limit) {count++;return true;}return false;}
}

4. 滑动窗口算法(Sliding Window Log)

滑动窗口算法是对固定窗口的改进,避免了固定窗口中产生的突发流量问题。它通过记录每个请求的时间戳,然后根据时间戳来判断请求是否超出了时间窗口。

特点

  • 较为精确地控制请求数量,避免了固定窗口的突发流量问题。
  • 实现相对复杂。

实现方式

  • 使用队列记录每个请求的时间戳,当新请求到来时,去除过期的时间戳并检查当前窗口内的请求数量。
import java.util.LinkedList;public class SlidingWindowLog {private final int limit;private final long windowSize;private LinkedList<Long> requests;public SlidingWindowLog(int limit, long windowSize) {this.limit = limit;this.windowSize = windowSize;this.requests = new LinkedList<>();}public synchronized boolean acquire() {long currentTime = System.currentTimeMillis();while (!requests.isEmpty() && currentTime - requests.peekFirst() >= windowSize) {requests.pollFirst();}if (requests.size() < limit) {requests.addLast(currentTime);return true;}return false;}
}

5. Redis限流

使用 Redis 进行限流是分布式环境中常见的一种做法,主要使用 Redis 的 INCREXPIRE 命令来实现。

特点

  • 适用于分布式系统。
  • 可扩展性强。

实现方式

  • 使用 Redis 存储请求计数,设置过期时间。
  • 请求时进行计数和判断。
public class RedisRateLimiter {private final String redisKey;private final int limit;private final long period;private final Jedis jedis;public RedisRateLimiter(String redisKey, int limit, long period, Jedis jedis) {this.redisKey = redisKey;this.limit = limit;this.period = period;this.jedis = jedis;}public boolean acquire() {long currentTime = System.currentTimeMillis() / 1000;String key = redisKey + ":" + currentTime;Long count = jedis.incr(key);if (count == 1) {jedis.expire(key, (int) period);}return count <= limit;}
}

6. 漏桶 + 令牌桶混合

某些场景中,结合漏桶算法和令牌桶算法可以平衡处理流量控制。

特点

  • 结合两种算法的优点,既支持突发流量,又能够平稳流量。

这些限流算法各有优缺点,适用于不同的场景。令牌桶算法通常用于需要支持突发流量的场景,漏桶算法适用于对流量的平滑控制,而计数窗口和滑动窗口算法适合于较为简单的应用场景。对于分布式应用,使用 Redis 等中间件进行限流会更有效。

相关文章:

你了解哪些Java限流算法?

大家好&#xff0c;我是锋哥。今天分享关于【你了解哪些Java限流算法?】面试题。希望对大家有帮助&#xff1b; 你了解哪些Java限流算法? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Java 中常用的限流算法主要有以下几种&#xff0c;它们广泛应用于处理流量控…...

【漫话机器学习系列】065.梯度(Gradient)

梯度&#xff08;Gradient&#xff09; 在数学和机器学习中&#xff0c;梯度是一个向量&#xff0c;用来表示函数在某一点的变化方向和变化率。它是多变量函数的一阶偏导数的组合。 梯度的定义 设有一个标量函数 &#xff0c;它对 ​ 是可微的&#xff0c;则该函数在某一点的…...

BswM(基础软件管理)详解

BswM&#xff08;基础软件管理&#xff09;详解 BswM&#xff08;Basic Software Manager&#xff09; 是 AUTOSAR BSW 的核心模块之一&#xff0c;负责协调基础软件&#xff08;BSW&#xff09;各模块的行为&#xff0c;根据系统状态、规则或事件动态配置其他模块。其设计目标…...

上位机知识篇---GitGitHub

文章目录 前言Git&GitHub是什么&#xff1f;GitGitHub Git和GitHub的区别定位功能使用方式开源协作 Git常用命令操作1. 配置2. 仓库操作3. 文件操作4. 分支与合并5.远程操作6.撤销更改7.查看历史 GitHub常用操作1.创建仓库2.Fork仓库3.Pull Request4.Issue跟踪5.代码审查 G…...

网站快速收录:提高页面加载速度的重要性

本文转自&#xff1a;百万收录网 原文链接&#xff1a;https://www.baiwanshoulu.com/32.html 网站快速收录中&#xff0c;提高页面加载速度具有极其重要的意义。以下从多个方面详细阐述其重要性&#xff1a; 一、提升用户体验 减少用户等待时间&#xff1a;页面加载速度直接…...

Vue.js组件开发-实现全屏背景图片滑动切换特效

使用 Vue 实现全屏背景图片滑动切换特效的详细步骤、代码、注释和使用说明。 步骤 创建 Vue 项目&#xff1a;使用 Vue CLI 创建一个新的 Vue 项目。准备图片资源&#xff1a;准备好要用于背景切换的图片&#xff0c;并将它们放在项目的合适目录下。编写 HTML 结构&#xff1…...

DeepSeek r1本地安装全指南

环境基本要求 硬件配置 需要本地跑模型&#xff0c;兼顾质量、性能、速度以及满足日常开发需要&#xff0c;我们需要准备以下硬件&#xff1a; CPU&#xff1a;I9内存&#xff1a;128GB硬盘&#xff1a;3-4TB 最新SSD&#xff0c;C盘确保有400GB&#xff0c;其它都可划成D盘…...

LitGPT - 20多个高性能LLM,具有预训练、微调和大规模部署的recipes

文章目录 一、关于 LitGPT二、快速启动安装LitGPT高级安装选项 从20多个LLM中进行选择 三、工作流程1、所有工作流程2、微调LLM3、部署LLM4、评估LLM5、测试LLM6、预训练LLM7、继续预训练LLM 四、最先进的功能五、训练方法示例 六、项目亮点教程 一、关于 LitGPT LitGPT 用于 …...

deepseek R1 14b显存占用

RTX2080ti 11G显卡&#xff0c;模型7b速度挺快&#xff0c;试试14B也不错。 7B显存使用5.6G&#xff0c;14B显存刚好够&#xff0c;出文字速度差不多。 打算自己写个移动宽带的IPTV播放器&#xff0c;不知道怎么下手&#xff0c;就先问他了。...

无用知识研究:对std::common_type以及问号表达式类型的理解

先说结论&#xff1a; 如果问号表达式能编译通过&#xff0c;那么std::common_type就能通过。因为common_type的底层依赖的就是?: common_type的实现里&#xff0c;利用了问号表达式&#xff1a;ternary conditional operator (?:) https://stackoverflow.com/questions/14…...

MapReduce概述

目录 1. MapReduce概述2. MapReduce的功能2.1 数据划分和计算任务调度2.2 数据/代码互定位2.3 系统优化2.4 出错检测和恢复 3. MapReduce处理流程4. MapReduce编程基础参考 1. MapReduce概述 MapReduce是面向大数据并行处理的计算模型、框架和平台:   1. 基于集群的高性能并行…...

循环神经网络(RNN)+pytorch实现情感分析

目录 一、背景引入 二、网络介绍 2.1 输入层 2.2 循环层 2.3 输出层 2.4 举例 2.5 深层网络 三、网络的训练 3.1 训练过程举例 1&#xff09;输出层 2&#xff09;循环层 3.2 BPTT 算法 1&#xff09;输出层 2&#xff09;循环层 3&#xff09;算法流程 四、循…...

Mac cursor设置jdk、Maven版本

基本配置 – Cursor 使用文档 首先是系统用户级别的设置参数&#xff0c;运行cursor&#xff0c;按下ctrlshiftp&#xff0c;输入Open User Settings(JSON)&#xff0c;在弹出的下拉菜单中选中下面这样的&#xff1a; 在打开的json编辑器中追加下面的内容&#xff1a; {"…...

WPS数据分析000005

目录 一、数据录入技巧 二、一维表 三、填充柄 向下自动填充 自动填充选项 日期填充 星期自定义 自定义序列 1-10000序列 四、智能填充 五、数据有效性 出错警告 输入信息 下拉列表 六、记录单 七、导入数据 ​编辑 八、查找录入 会员功能 Xlookup函数 VL…...

CTF从入门到精通

文章目录 背景知识CTF赛制 背景知识 CTF赛制 1.web安全:通过浏览器访问题目服务器上的网站&#xff0c;寻找网站漏洞(sql注入&#xff0c;xss&#xff08;钓鱼链接&#xff09;,文件上传&#xff0c;包含漏洞&#xff0c;xxe&#xff0c;ssrf&#xff0c;命令执行&#xff0c…...

Flutter使用Flavor实现切换环境和多渠道打包

在Android开发中通常我们使用flavor进行多渠道打包&#xff0c;flutter开发中同样有这种方式&#xff0c;不过需要在原生中配置 具体方案其实flutter官网个了相关示例&#xff08;https://docs.flutter.dev/deployment/flavors&#xff09;,我这里记录一下自己的操作 Android …...

Springboot如何使用面向切面编程AOP?

Springboot如何使用面向切面编程AOP? 在 Spring Boot 中使用面向切面编程&#xff08;AOP&#xff09;非常简单&#xff0c;Spring Boot 提供了对 AOP 的自动配置支持。以下是详细的步骤和示例&#xff0c;帮助你快速上手 Spring Boot 中的 AOP。 1. 添加依赖 首先&#xff…...

51单片机(STC89C52)开发:点亮一个小灯

软件安装&#xff1a; 安装开发板CH340驱动。 安装KEILC51开发软件&#xff1a;C51V901.exe。 下载软件&#xff1a;PZ-ISP.exe 创建项目&#xff1a; 新建main.c 将main.c加入至项目中&#xff1a; main.c:点亮一个小灯 #include "reg52.h"sbit LED1P2^0; //P2的…...

基于MinIO的对象存储增删改查

MinIO是一个高性能的分布式对象存储服务。Python的minio库可操作MinIO&#xff0c;包括创建/列出存储桶、上传/下载/删除文件及列出文件。 查看帮助信息 minio.exe --help minio.exe server --help …...

Ubuntu Server 安装 XFCE4桌面

Ubuntu Server没有桌面环境&#xff0c;一些软件有桌面环境使用起来才更加方便&#xff0c;所以我尝试安装桌面环境。常用的桌面环境有&#xff1a;GNOME、KDE Plasma、XFCE4等。这里我选择安装XFCE4桌面环境&#xff0c;主要因为它是一个极轻量级的桌面环境&#xff0c;适合内…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

网络编程(UDP编程)

思维导图 UDP基础编程&#xff08;单播&#xff09; 1.流程图 服务器&#xff1a;短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

DeepSeek越强,Kimi越慌?

被DeepSeek吊打的Kimi&#xff0c;还有多少人在用&#xff1f; 去年&#xff0c;月之暗面创始人杨植麟别提有多风光了。90后清华学霸&#xff0c;国产大模型六小虎之一&#xff0c;手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水&#xff0c;单月光是投流就花费2个亿。 疯…...

Qt的学习(二)

1. 创建Hello Word 两种方式&#xff0c;实现helloworld&#xff1a; 1.通过图形化的方式&#xff0c;在界面上创建出一个控件&#xff0c;显示helloworld 2.通过纯代码的方式&#xff0c;通过编写代码&#xff0c;在界面上创建控件&#xff0c; 显示hello world&#xff1b; …...

Linux 中替换文件中的某个字符串

如果你想在 Linux 中替换文件中的某个字符串&#xff0c;可以使用以下命令&#xff1a; 1. 基本替换&#xff08;sed 命令&#xff09; sed -i s/原字符串/新字符串/g 文件名示例&#xff1a;将 file.txt 中所有的 old_text 替换成 new_text sed -i s/old_text/new_text/g fi…...

【NLP】 38. Agent

什么是 Agent&#xff1f; 一个 Agent 就是能够 理解、思考&#xff0c;并且进行世界交互 的模型系统&#xff0c;并不是纯粹的 prompt 返回器。 它可以&#xff1a; 读取外部数据&#xff08;文件/API&#xff09;使用记忆进行上下文维持用类Chain-of-Thought (CoT)方式进行…...