当前位置: 首页 > news >正文

DeepSeek r1本地安装全指南

环境基本要求

硬件配置

需要本地跑模型,兼顾质量、性能、速度以及满足日常开发需要,我们需要准备以下硬件:

  • CPU:I9
  • 内存:128GB
  • 硬盘:3-4TB 最新SSD,C盘确保有400GB,其它都可划成D盘;
  • GPU:4080S即可(有条件的上4090D或者双卡),但是4080S已经足足够用了;
  • 风扇:华硕七彩,10个 + 大功能水冷;
  • 机箱:别用什么海景房,什么火山岩,不实用,太小,建议直接就是买那种大号的半透明机箱一个就行了,又大散热又好,什么海景房火山岩都不如搞7彩风扇好看;

软件配置

  • 操作系统:Win11/Linux CentOS8.2/Ubuntu 24+
  • 安装nvidia驱动,安装nvidia cuda核心,安装nvidia cudnn
  • python 3.10+
  • chatbox(用于作GUI聊天对话界面用)

确保nvidia的驱动在安装后你还必须要有nvidia cuda核心

一般互联网开发人员不知道这是什么,我们这样来装它。

先打开你的nvidia驱动装完后右下角的nvidia control panel找到以下这样的一个界面

一般4080s+以上都是12.6.65及以上,我们记成12.6.0。

于是打开以下网址下载nvidia cuda核心:

https://developer.nvidia.com/cuda-12-6-0-download-archive?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exe_local

 在此下载cuda 12.6。

确保nvidia CUDNN被安装

一定要先装完了cuda核心后,再要装cudnn。

https://developer.nvidia.com/rdp/cudnn-archive#a-collapse897-120

我们进入nvidia开发者中心里下载它。

cuDNN下载完成后,是一个压缩包,解压完成后。请严格按照下面步骤去做,它解压后包含bin,include,lib三个目录。

  1. 把cuda\bin\cudnn64_7.dll复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin 目录下.

  2. 把\cuda\ include\cudnn.h复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include 目录下.

  3. 把\cuda\lib\x64\cudnn.lib复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib\x64 目录下.

安装Ollama

接着我们下载Ollama,https://ollama.com/。

下载完后直接安装它。

安装完后右下角会有这么一个图标。

安装完后即启动了,你也可以设置成开机不启动。

配置ollama

我我们使用ollama安装deek seek前,一定要先做配置,如果不配置,它会在安装时把很多模型文件一股脑的装到你的:

  • Windows 目录:C:\Users%username%.ollama\models
  • MacOS 目录:~/.ollama/models
  • Linux 目录:/usr/share/ollama/.ollama/models

这样的话你的C盘或者是启动盘就吃紧了,到时麻烦可就大了。

必配参数与解释

OLLAMA_MODELS

模型文件存放目录,默认目录为当前用户目录我们把它指向了D盘的d:\ollama_models。

OLLAMA_HOST

Ollama 服务监听的网络地址,默认为127.0.0.1,如果允许其他电脑访问 Ollama(如:局域网中的其他电脑),建议设置成0.0.0.0,从而允许其他网络访问

OLLAMA_PORT

Ollama 服务监听的默认端口,默认为11434,如果端口有冲突,可以修改设置成其他端口(如:8080等)

OLLAMA_ORIGINS

HTTP 客户端请求来源,半角逗号分隔列表,若本地使用无严格要求,可以设置成星号,代表不受限制

OLLAMA_KEEP_ALIVE

大模型加载到内存中后的存活时间,默认为5m即 5 分钟(如:纯数字如 300 代表 300 秒,0 代表处理请求响应后立即卸载模型,任何负数则表示一直存活);我们可设置成24h,即模型在内存中保持 24 小时,提高访问速度

OLLAMA_NUM_PARALLEL

请求处理并发数量,默认为1,即单并发串行处理请求,可根据实际情况进行调整

OLLAMA_MAX_QUEUE

请求队列长度,默认值为512,可以根据情况设置,超过队列长度请求被抛弃

OLLAMA_DEBUG

输出 Debug 日志标识,应用研发阶段可以设置成1,即输出详细日志信息,便于排查问题

OLLAMA_MAX_LOADED_MODELS

最多同时加载到内存中模型的数量,默认为1,即只能有 1 个模型在内存中

配置完成后,启动一个terminal或者是命令行,然后以下几条常用ollama命令供参考

Ollama常用命令

列出当前系统装了哪些模型

ollama list

NAME            ID              SIZE    MODIFIED

gemma2:9b       c19987e1e6e2    5.4 GB  7 days ago

qwen2:7b        e0d4e1163c58    4.4 GB  10 days ago

安装和运行一个模型

ollama run deepseek-r1:14b

如果这个模型不存在,它就会先下载这个模型至ollama_models指向的那个目录并作下载,如上条命令就是安装和运行deep seek r1 14b的。

查看己安装的模型

ollama ps

删除一个模型

ollama rm 

如:

ollama rm gemma2:9b

安装完后Deek Seek使用ChatBox来做验证

下载网址

 https://chatboxai.app/zh

建议安装1.9.6版。

配置

 我们使用了一个生产的复杂场景,3层推理分别试了让GPT3.5 TURBO16K以及GPT4O,还有QWEN2 7B以及Deep Seek r1 14b分别作了回答。

无论是从GPU性能开销、回答正确性来看,Deep Seek秒杀了Gpt4O,不得不说Deep Seek是我们的国产之光。

这下,我们实现了AI自由了。

附、其它ollama支持的模型

模型

参数大小使用命令

Llama 3.1

8B

4.7GB

ollama run llama3.1

Llama 3.1

70B40GB

ollama run llama3.1:70b

Llama 3.1

405B231GB

ollama run llama3.1:405b

Gemma 2

9B

5.5GB

ollama run gemma2

Gemma 2

27B16GB

ollama run gemma2:27b

qwen2

7B4.4GB

ollama run qwen2

qwen2

72B41GB

ollama run qwen2:72b

glm4

9B

5.5GB

ollama run glm4

相关文章:

DeepSeek r1本地安装全指南

环境基本要求 硬件配置 需要本地跑模型,兼顾质量、性能、速度以及满足日常开发需要,我们需要准备以下硬件: CPU:I9内存:128GB硬盘:3-4TB 最新SSD,C盘确保有400GB,其它都可划成D盘…...

LitGPT - 20多个高性能LLM,具有预训练、微调和大规模部署的recipes

文章目录 一、关于 LitGPT二、快速启动安装LitGPT高级安装选项 从20多个LLM中进行选择 三、工作流程1、所有工作流程2、微调LLM3、部署LLM4、评估LLM5、测试LLM6、预训练LLM7、继续预训练LLM 四、最先进的功能五、训练方法示例 六、项目亮点教程 一、关于 LitGPT LitGPT 用于 …...

deepseek R1 14b显存占用

RTX2080ti 11G显卡,模型7b速度挺快,试试14B也不错。 7B显存使用5.6G,14B显存刚好够,出文字速度差不多。 打算自己写个移动宽带的IPTV播放器,不知道怎么下手,就先问他了。...

无用知识研究:对std::common_type以及问号表达式类型的理解

先说结论: 如果问号表达式能编译通过,那么std::common_type就能通过。因为common_type的底层依赖的就是?: common_type的实现里,利用了问号表达式:ternary conditional operator (?:) https://stackoverflow.com/questions/14…...

MapReduce概述

目录 1. MapReduce概述2. MapReduce的功能2.1 数据划分和计算任务调度2.2 数据/代码互定位2.3 系统优化2.4 出错检测和恢复 3. MapReduce处理流程4. MapReduce编程基础参考 1. MapReduce概述 MapReduce是面向大数据并行处理的计算模型、框架和平台:   1. 基于集群的高性能并行…...

循环神经网络(RNN)+pytorch实现情感分析

目录 一、背景引入 二、网络介绍 2.1 输入层 2.2 循环层 2.3 输出层 2.4 举例 2.5 深层网络 三、网络的训练 3.1 训练过程举例 1)输出层 2)循环层 3.2 BPTT 算法 1)输出层 2)循环层 3)算法流程 四、循…...

Mac cursor设置jdk、Maven版本

基本配置 – Cursor 使用文档 首先是系统用户级别的设置参数,运行cursor,按下ctrlshiftp,输入Open User Settings(JSON),在弹出的下拉菜单中选中下面这样的: 在打开的json编辑器中追加下面的内容: {"…...

WPS数据分析000005

目录 一、数据录入技巧 二、一维表 三、填充柄 向下自动填充 自动填充选项 日期填充 星期自定义 自定义序列 1-10000序列 四、智能填充 五、数据有效性 出错警告 输入信息 下拉列表 六、记录单 七、导入数据 ​编辑 八、查找录入 会员功能 Xlookup函数 VL…...

CTF从入门到精通

文章目录 背景知识CTF赛制 背景知识 CTF赛制 1.web安全:通过浏览器访问题目服务器上的网站,寻找网站漏洞(sql注入,xss(钓鱼链接),文件上传,包含漏洞,xxe,ssrf,命令执行&#xff0c…...

Flutter使用Flavor实现切换环境和多渠道打包

在Android开发中通常我们使用flavor进行多渠道打包,flutter开发中同样有这种方式,不过需要在原生中配置 具体方案其实flutter官网个了相关示例(https://docs.flutter.dev/deployment/flavors),我这里记录一下自己的操作 Android …...

Springboot如何使用面向切面编程AOP?

Springboot如何使用面向切面编程AOP? 在 Spring Boot 中使用面向切面编程(AOP)非常简单,Spring Boot 提供了对 AOP 的自动配置支持。以下是详细的步骤和示例,帮助你快速上手 Spring Boot 中的 AOP。 1. 添加依赖 首先&#xff…...

51单片机(STC89C52)开发:点亮一个小灯

软件安装: 安装开发板CH340驱动。 安装KEILC51开发软件:C51V901.exe。 下载软件:PZ-ISP.exe 创建项目: 新建main.c 将main.c加入至项目中: main.c:点亮一个小灯 #include "reg52.h"sbit LED1P2^0; //P2的…...

基于MinIO的对象存储增删改查

MinIO是一个高性能的分布式对象存储服务。Python的minio库可操作MinIO,包括创建/列出存储桶、上传/下载/删除文件及列出文件。 查看帮助信息 minio.exe --help minio.exe server --help …...

Ubuntu Server 安装 XFCE4桌面

Ubuntu Server没有桌面环境,一些软件有桌面环境使用起来才更加方便,所以我尝试安装桌面环境。常用的桌面环境有:GNOME、KDE Plasma、XFCE4等。这里我选择安装XFCE4桌面环境,主要因为它是一个极轻量级的桌面环境,适合内…...

MySQL 存储函数:数据库的自定义函数

在数据库开发中,存储函数(Stored Function)是一种非常有用的工具。它允许我们创建自定义的函数,这些函数可以在 SQL 查询中像内置函数一样使用,用于实现特定的逻辑和计算。本文将深入探讨 MySQL 存储函数的概念、与存储…...

代码随想录_栈与队列

栈与队列 232.用栈实现队列 232. 用栈实现队列 使用栈实现队列的下列操作: push(x) – 将一个元素放入队列的尾部。 pop() – 从队列首部移除元素。 peek() – 返回队列首部的元素。 empty() – 返回队列是否为空。 思路: 定义两个栈: 入队栈, 出队栈, 控制出入…...

【微服务与分布式实践】探索 Sentinel

参数设置 熔断时长 、最小请求数、最大RT ms、比例阈值、异常数 熔断策略 慢调⽤⽐例 当单位统计时⻓内请求数⽬⼤于设置的最⼩请求数⽬,并且慢调⽤的⽐例⼤于阈值,则接下来的熔断时⻓内请求会⾃动被熔断 异常⽐例 当单位统计时⻓内请求数⽬⼤于设置…...

深入研究异常处理机制

一、原理探究 C异常处理 本节内容针对 Linux 下的 C 异常处理机制,重点在于研究如何在异常处理流程中利用溢出漏洞,所以不对异常处理及 unwind 的过程做详细分析,只做简单介绍 异常机制中主要的三个关键字:throw 抛出异常&#x…...

【memgpt】letta 课程4:基于latta框架构建MemGpt代理并与之交互

Lab 3: Building Agents with memory 基于latta框架构建MemGpt代理并与之交互理解代理状态,例如作为系统提示符、工具和agent的内存查看和编辑代理存档内存MemGPT 代理是有状态的 agents的设计思路 每个步骤都要定义代理行为 Letta agents persist information over time and…...

讯飞智作 AI 配音技术浅析(二):深度学习与神经网络

讯飞智作 AI 配音技术依赖于深度学习与神经网络,特别是 Tacotron、WaveNet 和 Transformer-TTS 模型。这些模型通过复杂的神经网络架构和数学公式,实现了从文本到自然语音的高效转换。 一、Tacotron 模型 Tacotron 是一种端到端的语音合成模型&#xff…...

基于单片机的超声波液位检测系统(论文+源码)

1总体设计 本课题为基于单片机的超声波液位检测系统的设计,系统的结构框图如图2.1所示。其中包括了按键模块,温度检测模块,超声波液位检测模块,显示模块,蜂鸣器等器件设备。其中,采用STC89C52单片机作为主控…...

Autogen_core: test_code_executor.py

目录 代码代码解释 代码 import textwrapimport pytest from autogen_core.code_executor import (Alias,FunctionWithRequirements,FunctionWithRequirementsStr,ImportFromModule, ) from autogen_core.code_executor._func_with_reqs import build_python_functions_file f…...

从0开始使用面对对象C语言搭建一个基于OLED的图形显示框架

目录 前言 环境介绍 代码与动机 架构设计,优缺点 博客系列指引 前言 笔者前段时间花费了一周,整理了一下自从TM1637开始打算的,使用OLED来搭建一个通用的显示库的一个工程。笔者的OLED库已经开源到Github上了,地址在&#xf…...

Java实现.env文件读取敏感数据

文章目录 1.common-env-starter模块1.目录结构2.DotenvEnvironmentPostProcessor.java 在${xxx}解析之前执行,提前读取配置3.EnvProperties.java 这里的path只是为了代码提示4.EnvAutoConfiguration.java Env模块自动配置类5.spring.factories 自动配置和注册Enviro…...

Go反射指南

概念: 官方对此有个非常简明的介绍,两句话耐人寻味: 反射提供一种让程序检查自身结构的能力反射是困惑的源泉 第1条,再精确点的描述是“反射是一种检查interface变量的底层类型和值的机制”。 第2条,很有喜感的自嘲…...

Fullcalendar @fullcalendar/react 样式错乱丢失问题和导致页面卡顿崩溃问题

问题描述: 我使用 fullcalendar的react版本时,出现了一个诡异的问题,当我切换到 一个iframe页面时(整个页面是一个iframe嵌入的),再切换回来日历的样式丢失了!不仅丢失了样式还导致页面崩溃了&…...

【电工基础】4.低压电器元件,漏电保护器,熔断器,中间继电器

一。漏电保护器 1.使用区域 我们在家用总开关上使用空气开关(断路器),其余的厨房卧室为漏电保护器。 2.漏电保护器的简介 1.漏电:就是流入的电流和流出的电流不等,意味着电路回路中还有其它分支,可能是电流通过人体进…...

有限元分析学习——Anasys Workbanch第一阶段笔记梳理

第一阶段笔记主要源自于哔哩哔哩《ANSYS-workbench 有限元分析应用基础教程》 张晔 主要内容导图: 笔记导航如下: Anasys Workbanch第一阶段笔记(1)基本信息与结果解读_有限元分析变形比例-CSDN博客 Anasys Workbanch第一阶段笔记(2)网格单元与应力奇…...

C++中常用的十大排序方法之1——冒泡排序

成长路上不孤单😊😊😊😊😊😊 【😊///计算机爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】 今日分享关于C中常用的排序方法之——冒泡排序的相关…...

vscode+WSL2(ubuntu22.04)+pytorch+conda+cuda+cudnn安装系列

最近在家过年闲的没事,于是研究起深度学习开发工具链的配置和安装,之前欲与天公试比高,尝试在win上用vscodecuda11.6vs2019的cl编译器搭建cuda c编程环境,最后惨败,沦为笑柄,痛定思痛,这次直接和…...