当前位置: 首页 > news >正文

一种用于低成本水质监测的软传感器开源方法:以硝酸盐(NO3⁻)浓度为例

论文标题

A Soft Sensor Open-Source Methodology for Inexpensive Monitoring of Water Quality: A Case Study of NO3− Concentrations

作者信息

  • Antonio Jesús Chaves, ITIS Software, University of Málaga, 29071 Málaga, Spain

  • Cristian Martín, ITIS Software, University of Málaga, 29071 Málaga, Spain

  • Luis Llopis Torres, ITIS Software, University of Málaga, 29071 Málaga, Spain

  • Manuel Díaz, ITIS Software, University of Málaga, 29071 Málaga, Spain

  • Jaime Fernández-Ortega, Department of Geology and Center of Hydrogeology, University of Málaga (CEHIUMA), 29071 Málaga, Spain

  • Juan Antonio Barberá, Department of Geology and Center of Hydrogeology, University of Málaga (CEHIUMA), 29071 Málaga, Spain

  • Bartolomé Andreo, Department of Geology and Center of Hydrogeology, University of Málaga (CEHIUMA), 29071 Málaga, Spain

论文出处

本文发表于《Journal of Computational Science》。

论文主要内容

本文提出了一种基于开源框架的软传感器方法,用于低成本监测水质中的硝酸盐(NO3−)浓度。硝酸盐污染是全球性问题,影响环境完整性和公共健康。传统的硬件传感器成本高昂,限制了其大规模应用。因此,本研究探索了通过数据流集成软传感器的方法,以实时预测硝酸盐浓度。研究基于Kafka-ML框架,结合物联网(IoT)设备,通过数据流管理机器学习模型的生命周期。

研究背景

硝酸盐(NO3−)是地下水和地表水中的常见污染物,其浓度上升对环境质量和人类健康构成威胁。例如,饮用水中硝酸盐浓度过高可能导致婴儿高铁血红蛋白血症(“蓝婴综合征”)、甲状腺问题甚至增加胃癌风险。此外,硝酸盐在水生生态系统中的过量存在会导致富营养化,引发藻类水华或水生植物过度生长,消耗氧气并破坏水生生物。因此,世界卫生组织和欧盟将饮用水中硝酸盐的阈值设定为50 mg/L,以避免潜在健康问题。传统的硝酸盐测定方法依赖于实验室技术,如镉还原或离子色谱法,这些方法虽然准确,但成本高、耗时且无法提供实时数据。

研究方法

研究提出了一种基于Kafka-ML框架的软传感器开发方法。Kafka-ML是一个开源框架,用于管理使用数据流的机器学习模型生命周期。该方法包括以下步骤:

  1. 数据收集与预处理:通过IoT设备收集数据,并将其流式传输到Apache Kafka中。

  2. 模型选择与训练:在Kafka-ML中定义和训练多个机器学习模型,选择性能最佳的模型。

  3. 模型部署与推理:将训练好的模型部署到Kafka-ML中,用于实时推理。

  4. 软传感器可视化:通过Kafka-ML的可视化工具实时显示软传感器的预测结果。

实验设计

实验中使用了来自西班牙马拉加省东部龙达山脉的喀斯特泉水数据库,包含13种不同的物理化学参数(如电导率、温度、pH值等)。这些参数通过低成本传感器(如温度传感器、pH传感器和电导率传感器)获取。实验中使用了Arduino MKR NB 1500作为处理单元,连接上述传感器,总成本约为300欧元,远低于传统硝酸盐水质探头的成本。

实验结果
  1. 模型评估:评估了六种不同的神经网络架构,最终选择了表现最佳的模型(模型4),其平均绝对误差(MAE)为1.55 mg/L,均方误差(MSE)为5.60 mg/L。该模型在不同浓度范围内的预测表现良好,但在高浓度(>50 mg/L)范围内精度有待提高。

  2. 可扩展性评估:通过模拟不同数量的客户端和数据传输频率,测试了Kafka-ML的响应时间和可扩展性。结果表明,增加模型副本和Kafka分区可以显著降低延迟,提高系统的可用性和响应能力。

  3. 实验室与现场测试:在实验室和马拉加省的瓜达尔霍尔河进行了现场测试。测试结果表明,软传感器在不同环境下的表现存在差异,尤其是在实验室条件下,模型预测与实际测量值之间存在较大偏差。这可能是由于训练数据集与测试环境之间的差异所致。

讨论与结论

本研究提出的方法在软传感器开发中具有显著优势,包括快速开发、低响应时间和可扩展性。通过结合低成本设备,可以大规模部署软传感器,有效管理水资源监测。然而,模型在不同环境下的适用性需要进一步验证,建议针对特定生态系统重新训练模型,以提高其适应性和准确性。未来的工作将包括改进数据预处理和后处理功能、集成预训练模型、检测和纠正概念漂移,以及优化推理模块的响应时间。

相关文章:

一种用于低成本水质监测的软传感器开源方法:以硝酸盐(NO3⁻)浓度为例

论文标题 A Soft Sensor Open-Source Methodology for Inexpensive Monitoring of Water Quality: A Case Study of NO3− Concentrations 作者信息 Antonio Jess Chaves, ITIS Software, University of Mlaga, 29071 Mlaga, Spain Cristian Martn, ITIS Software, Universi…...

[250130] VirtualBox 7.1.6 维护版本发布 | Anthropic API 推出全新引用功能

目录 VirtualBox 7.1.6 维护版本发布⚙️ 功能改进🛠️ Bug 修复 Anthropic API 推出全新引用功能,让 Claude 的回答更可信 VirtualBox 7.1.6 维护版本发布 VirtualBox 7.1.6 现已发布,这是一个维护版本,主要修复了一些错误并进行…...

JVM_类的加载、链接、初始化、卸载、主动使用、被动使用

①. 说说类加载分几步? ①. 按照Java虚拟机规范,从class文件到加载到内存中的类,到类卸载出内存为止,它的整个生命周期包括如下7个阶段: 第一过程的加载(loading)也称为装载验证、准备、解析3个部分统称为链接(Linking)在Java中数据类型分为基本数据类型和引用数据…...

2025最新版MySQL安装使用指南

2025最新版MySQL安装使用指南 The Installation and Usage Guide of the Latest Version of Oracle MySQL in 2025 By JacksonML 1. 获取MySQL 打开Chrome浏览器,访问官网链接:https://www.mysql.com/ ,随即打开MySQL官网主页面&#xff…...

MIMIC IV数据库中mimiciv_hosp的transfers表的careunit分析

以下是MIMIC IV数据库中mimiciv_hosp的transfers表的careunit的所有值,从医学专业角度分析,下面哪些科室会有实施心脏或神经手术? Cardiac Surgery Cardiac Vascular Intensive Care Unit (CVICU) Cardiology Cardiology Surgery Intermediat…...

AI学习指南HuggingFace篇-Hugging Face 的环境搭建

一、引言 Hugging Face作为自然语言处理(NLP)领域的强大工具,提供了丰富的预训练模型和数据集,极大地简化了开发流程。本文将详细介绍如何搭建适合Hugging Face开发的环境,包括Python环境配置、依赖安装以及推荐的开发工具,帮助读者准备好开发环境。 二、Python环境配置…...

白嫖DeepSeek:一分钟完成本地部署AI

1. 必备软件 LM-Studio 大模型客户端DeepSeek-R1 模型文件 LM-Studio 是一个支持众多流行模型的AI客户端,DeepSeek是最新流行的堪比GPT-o1的开源AI大模型。 2. 下载软件和模型文件 2.1 下载LM-Studio 官方网址:https://lmstudio.ai 打开官网&#x…...

C# dataGridView1获取选中行的名字

在视觉项目中编写的框架需要能够选择产品或复制产品等方便后续换型,视觉调试仅需调试相机图像、调试视觉相关参数、标定,再试跑调试优化参数。 C# dataGridView1 鼠标点击某一行能够计算出是那一行 使用CellMouseClick事件 首先,在Form的构造…...

Day28(补)-【AI思考】-AI会不会考虑自己的需求?

文章目录 AI会不会考虑自己的需求?一、**技术本质:深度≠理解**二、**传播机制:热搜如何制造幻觉**三、**伦理考量:为何必须"撇清"**关键结论 AI会不会考虑自己的需求? 让思想碎片重焕生机的灵魂&#xff1a…...

幸运数字——蓝桥杯

1.问题描述 哈沙德数是指在某个固定的进位制当中,可以被各位数字之和整除的正整数。例如 126126 是十进制下的一个哈沙德数,因为 (126)10mod(126)0;126 也是八进制下的哈沙德数,因为 (126)10(176)8,(126)10​mod(176)…...

快速提升网站收录:避免常见SEO误区

本文转自:百万收录网 原文链接:https://www.baiwanshoulu.com/26.html 在快速提升网站收录的过程中,避免常见的SEO误区是至关重要的。以下是一些常见的SEO误区及相应的避免策略: 一、关键词堆砌误区 误区描述: 很多…...

[Java]泛型(二)泛型方法

1.定义 在 Java 中,泛型方法是指在方法声明中使用泛型类型参数的一种方法。它使得方法能够处理不同类型的对象,而不需要为每种类型写多个方法,从而提高代码的重用性。 泛型方法与泛型类不同,泛型方法的类型参数仅仅存在于方法的…...

如何监控ubuntu系统某个程序的运行状态,如果程序出现异常,对其自动重启。

在Ubuntu系统中,可以通过编写脚本结合cron或systemd来监控程序的运行状态,并在程序异常时自动重启。以下是具体步骤: 方法一:使用Shell脚本和Cron 编写监控脚本 创建一个Shell脚本来检查程序是否运行,并在程序异常时重…...

UE学习日志#15 C++笔记#1 基础复习

1.C20的import 看看梦开始的地方&#xff1a; import <iostream>;int main() {std::cout << "Hello World!\n"; } 经过不仔细观察发现梦开始的好像不太一样&#xff0c;这个import是C20的模块特性 如果是在VS里编写的话&#xff0c;要用这个功能需要新…...

CSS:跑马灯

<div class"swiper-container"><div class"swiper-wrapper"><!-- 第一组 --><div class"item" v-for"item in cardList" :key"first-item.id"><img :src"item.image" alt""…...

rust 自定义错误(十二)

错误定义&#xff1a; let file_content parse_file("test.txt");if let Err(e) file_content {println!("Error: {:?}", e);}let file_content parse_file2("test.txt");if let Err(e) file_content {match e {ParseFileError::File > …...

EWM 变更库存类型

目录 1 简介 2 配置 3 业务操作 1 简介 一般情况下 EWM 标准收货流程是 ROD&#xff08;Ready on Dock&#xff09; --> AFS&#xff08;Avaiable for Sale&#xff09;&#xff0c;对应 AG 001 --> AG 002&#xff0c;对应库存类型 F1 --> F2。 因业务需要反向进…...

AI大模型开发原理篇-9:GPT模型的概念和基本结构

基本概念 生成式预训练模型 GPT&#xff08;Generative Pre-trained Transformer&#xff09;模型 是由 OpenAI 开发的基于 Transformer 架构的自然语言处理&#xff08;NLP&#xff09;模型&#xff0c;专门用于文本生成任务。它的设计理念在于通过大规模的预训练来学习语言模…...

MySQL数据库(二)

一 DDL (一 数据库操作 1 查询-数据库&#xff08;所有/当前&#xff09; 1 所有数据库&#xff1a; show databases; 2 查询当前数据库&#xff1a; select database(); 2 创建-数据库 可以定义数据库的编码方式 create database if not exists ax1; create database ax2…...

从0到1:C++ 开启游戏开发奇幻之旅(二)

目录 游戏开发核心组件设计 游戏循环 游戏对象管理 碰撞检测 人工智能&#xff08;AI&#xff09; 与物理引擎 人工智能 物理引擎 性能优化技巧 内存管理优化 多线程处理 实战案例&#xff1a;开发一个简单的 2D 射击游戏 项目结构设计 代码实现 总结与展望 游戏…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...