AI大模型开发原理篇-9:GPT模型的概念和基本结构
基本概念
生成式预训练模型 GPT(Generative Pre-trained Transformer)模型 是由 OpenAI 开发的基于 Transformer 架构的自然语言处理(NLP)模型,专门用于文本生成任务。它的设计理念在于通过大规模的预训练来学习语言模型,然后通过微调来适应特定任务。;GPT是生成式语言模型
。我们一路以来讲的N-Gram、Word2Vec、NPLM和Seq2Seq预测的都是下一个词,其本质都是生成式语言模型。
GPT架构概述(只使用解码器)
-
输入嵌入:输入的文本(如一句话)首先通过词嵌入层转换为向量,然后加上位置编码,以保留单词的顺序信息。
-
解码器堆叠:GPT使用多个解码器层进行堆叠。每个解码器层都会处理前一层的输出,并在此基础上生成更高层次的表示。
-
生成下一个词:解码器的输出通过softmax层转换为词汇表中每个词的概率分布,选择最大概率的词作为下一个生成的词。
GPT的基本结构
GPT模型的核心基于Transformer架构,具体来说,它使用了Transformer的解码器部分。Transformer本身由编码器(Encoder)和解码器(Decoder)组成,但GPT只采用了解码器。GPT模型的主要组件包括:
1 输入嵌入(Input Embedding)
- 任何输入的文本(例如一个句子)都会先通过一个词嵌入层(Word Embedding Layer),将每个单词转换成一个固定维度的向量。
- 这个向量通常是高维的,以捕捉词汇的语义信息。
2 位置编码(Positional Encoding)
由于Transformer没有顺序处理的特点,它通过位置编码来为每个词添加位置信息。位置编码是一个与词嵌入相加的向量,它告诉模型一个词在句子中的相对位置。
- 位置编码的设计方式是基于正弦和余弦函数的。
- GPT将每个词的嵌入向量与位置编码向量相加,以便模型能够理解文本中词汇的顺序。
3 多头自注意力机制(Multi-head Self-Attention)
自注意力机制是Transformer的关键特性,它允许模型在处理每个词时考虑序列中所有其他词的关系。具体来说:
- 对于每个词,模型计算其与其他词的相关性(注意力权重),并根据这些权重重新加权每个词的表示。
- 多头注意力将自注意力机制分成多个“头”,每个头在不同的子空间中计算注意力权重,能够捕捉到多种不同的语义信息。
- 通过将多个注意力头的结果拼接起来,模型能够获得更丰富的上下文信息。
4 前馈神经网络(Feed-forward Neural Network)
每个Transformer解码器层中都包含一个前馈神经网络,它对每个位置的词向量进行独立的变换。这个网络包含两个线性层和一个激活函数,通常是ReLU或GELU。
- 第一层将输入的向量投影到一个更大的空间,接着应用激活函数,再通过第二层将其投影回原来的维度。
5 层归一化(Layer Normalization)
每个自注意力和前馈网络的输出都通过层归一化,这有助于加速训练,并减少梯度爆炸或消失的问题。
- 层归一化通过对每一层的输出进行标准化,使得模型的训练过程更加稳定。
6 输出层(Output Layer)
在模型的最终输出层,GPT会使用softmax函数来将模型的输出(通常是一个向量)转换成词汇表中所有词的概率分布。生成过程依赖于这个概率分布:
- 每次生成时,模型选择概率最高的词作为输出。
- 生成一个词后,这个词会被添加到上下文中,继续生成下一个词。
预训练(Pre-training)与微调(Fine-tuning)
- 预训练:GPT的预训练是通过大量无标签文本数据进行的,目标是通过自回归的方式最大化下一个词的条件概率。
- 微调:在微调阶段,GPT模型根据特定任务(如问答、情感分析等)进行训练,通过监督学习进一步优化模型参数。
GPT的关键组件总结
GPT的关键组件包括:
- Transformer架构:核心结构,特别是解码器部分。
- 自回归生成:基于前文生成下一个词,逐步生成文本。
- 输入嵌入和位置编码:将词汇转化为向量,保留顺序信息。
- 多层自注意力机制:捕捉词与词之间的全局依赖关系。
- 前馈神经网络和层归一化:用于提升模型的非线性表达能力和训练稳定性。
- 输出层和softmax:将模型输出转换为概率分布,生成最终词汇。
- 损失函数和优化器:通过交叉熵损失优化模型,使得模型能够正确预测下一个词。
相关文章:

AI大模型开发原理篇-9:GPT模型的概念和基本结构
基本概念 生成式预训练模型 GPT(Generative Pre-trained Transformer)模型 是由 OpenAI 开发的基于 Transformer 架构的自然语言处理(NLP)模型,专门用于文本生成任务。它的设计理念在于通过大规模的预训练来学习语言模…...

MySQL数据库(二)
一 DDL (一 数据库操作 1 查询-数据库(所有/当前) 1 所有数据库: show databases; 2 查询当前数据库: select database(); 2 创建-数据库 可以定义数据库的编码方式 create database if not exists ax1; create database ax2…...

从0到1:C++ 开启游戏开发奇幻之旅(二)
目录 游戏开发核心组件设计 游戏循环 游戏对象管理 碰撞检测 人工智能(AI) 与物理引擎 人工智能 物理引擎 性能优化技巧 内存管理优化 多线程处理 实战案例:开发一个简单的 2D 射击游戏 项目结构设计 代码实现 总结与展望 游戏…...

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.18 逻辑运算引擎:数组条件判断的智能法则
1.18 逻辑运算引擎:数组条件判断的智能法则 1.18.1 目录 #mermaid-svg-QAFjJvNdJ5P4IVbV {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-QAFjJvNdJ5P4IVbV .error-icon{fill:#552222;}#mermaid-svg-QAF…...

EasyExcel写入和读取多个sheet
最近在工作中,作者频频接触到Excel处理,因此也对EasyExcel进行了一定的研究和学习,也曾困扰过如何处理多个sheet,因此此处分享给大家,希望能有所帮助 目录 1.依赖 2. Excel类 3.处理Excel读取和写入多个sheet 4. 执…...
LLM架构与优化:从理论到实践的关键技术
标题:“LLM架构与优化:从理论到实践的关键技术” 文章信息摘要: 文章探讨了大型语言模型(LLM)开发与应用中的关键技术,包括Transformer架构、注意力机制、采样技术、Tokenization等基础理论,以…...

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.22 形状操控者:转置与轴交换的奥秘
1.22 形状操控者:转置与轴交换的奥秘 目录 #mermaid-svg-Qb3eoIWrPbPGRVAf {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-Qb3eoIWrPbPGRVAf .error-icon{fill:#552222;}#mermaid-svg-Qb3eoIWrPbPGRVAf…...

NLP模型大对比:Transformer >Seq2Seq > LSTM > RNN > n-gram
结论 Transformer 大于 传统的Seq2Seq 大于 LSTM 大于 RNN 大于 传统的n-gram n-gram VS Transformer 我们可以用一个 图书馆查询 的类比来解释它们的差异: 一、核心差异对比 维度n-gram 模型Transformer工作方式固定窗口的"近视观察员"全局关联的&q…...

DeepSeek部署教程(基于Ollama)
虽说在过年,但不能忘了学习。这几天科技圈最火的莫过于deepseek,我抽空也学习一下deepseek的部署过程,主要还是因为官方服务已经彻底瘫了[手动狗头]。 1、下载Ollama并安装 https://github.com/ollama/ollama/releases/latest/download/Oll…...
Java基础面试题总结(题目来源JavaGuide)
问题1:Java 中有哪 8 种基本数据类型?它们的默认值和占用的空间大小知道不? 说说这 8 种基本数据类型对 应的包装类型。 在 Java 中,有 8 种基本数据类型(Primitive Types): 基本数据类型关键…...

WPS mathtype间距太大、显示不全、公式一键改格式/大小
1、间距太大 用mathtype后行距变大的原因 mathtype行距变大到底怎么解决-MathType中文网 段落设置固定值 2、显示不全 设置格式: 打开MathType编辑器点击菜单栏中的"格式(Format)"选择"间距(Spacing)"在弹出的对话框中调整"分数间距(F…...

宇宙大爆炸是什么意思
根据宇宙大爆炸学说,宇宙间的一切都在彼此远离,而且距离越远,远离的速度越快。我们只能在地球上观察这种现象,而我们观察到的速度符合如下公式,其中 为哈勃常数, 为距离, 为速度(…...
MotionLCM 部署笔记
目录 依赖项 humanml3d: sentence-t5-large 下载数据: 报错:No module named sentence_transformers 继续报错:from transformers.integrations import CodeCarbonCallback 解决方法: GitHub - Dai-Wenxun/Moti…...

VLLM性能调优
1. 抢占 显存不够的时候,某些request会被抢占。其KV cache被清除,腾退给其他request,下次调度到它,重新计算KV cache。 报这条消息,说明已被抢占: WARNING 05-09 00:49:33 scheduler.py:1057 Sequence gr…...
ESP32-S3模组上跑通esp32-camera(39)
接前一篇文章:ESP32-S3模组上跑通esp32-camera(38) 一、OV5640初始化 2. 相机初始化及图像传感器配置 上一回继续对reset函数的后一段代码进行解析。为了便于理解和回顾,再次贴出reset函数源码,在components\esp32-camera\sensors\ov5640.c中,如下: static int reset…...

Linux《基础指令》
在之前的Linux《Linux简介与环境的搭建》当中我们已经初步了解了Linux的由来和如何搭建Linux环境,那么接下来在本篇当中我们就要来学习Linux的基础指令。在此我们的学习是包括两个部分,即指令和关于Linux的基础知识;因此本篇指令和基础知识的…...
9.进程间通信
9.进程间通信 **1. 进程间通信(IPC)概述****2. 无名管道(Pipe)****3. 有名管道(FIFO)****4. 信号通信(Signal)****5. 练习与作业****6. 信号的应用****7. 总结** 1. 进程间通信&…...

Windows中本地组策略编辑器gpedit.msc打不开/微软远程桌面无法复制粘贴
目录 背景 解决gpedit.msc打不开 解决复制粘贴 剪贴板的问题 启用远程桌面剪贴板与驱动器 重启RDP剪贴板监视程序 以上都不行?可能是操作被Win11系统阻止 最后 背景 远程桌面无法复制粘贴,需要查看下主机策略组设置,结果按WinR输入…...

供应链系统设计-供应链中台系统设计(十二)- 清结算中心设计篇(一)
概述 在之前的文章中,我们通过之前的两篇文章中,如下所示: 供应链系统设计-供应链中台系统设计(十)- 清结算中心概念片篇 供应链系统设计-供应链中台系统设计(十一)- 清结算中心概念片篇 说…...
Vue.js 单页应用(SPA)开发教程:从零开始构建你的第一个项目
单页应用(SPA,Single Page Application)是现代前端开发的主流模式。Vue.js 是一个非常适合构建 SPA 的框架,它通过 Vue Router 实现页面导航,通过组件化开发和状态管理实现复杂的交互功能。本篇教程将带你了解 SPA 的基…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么?它的作用是什么? Spring框架的核心容器是IoC(控制反转)容器。它的主要作用是管理对…...
webpack面试题
面试题:webpack介绍和简单使用 一、webpack(模块化打包工具)1. webpack是把项目当作一个整体,通过给定的一个主文件,webpack将从这个主文件开始找到你项目当中的所有依赖文件,使用loaders来处理它们&#x…...
GeoServer发布PostgreSQL图层后WFS查询无主键字段
在使用 GeoServer(版本 2.22.2) 发布 PostgreSQL(PostGIS)中的表为地图服务时,常常会遇到一个小问题: WFS 查询中,主键字段(如 id)莫名其妙地消失了! 即使你在…...