当前位置: 首页 > news >正文

(算法竞赛)使用广度优先搜索(BFS)解决迷宫最短路径问题

在这个充满奇思妙想的世界里,每一次探索都像是打开了一扇通往新世界的大门。今天,我们将踏上一段特别的旅程,去揭开那些隐藏在代码、算法、数学谜题或生活智慧背后的秘密。🎉😊

所以,系好安全带,准备好迎接一场充满欢笑和惊喜的冒险吧!我们的故事,现在正式开始……

题目描述

当你站在一个迷宫里的时候,往往会被错综复杂的道路弄得失去方向感,如果你能得到迷宫地图,事情就会变得非常简单。假设你已经得到了一个 n x m 的迷宫的图纸,请你找出从起点到出口的最短路。

输入: 第一行是两个整数 n 和 m (1 ≤ n,m ≤ 100),表示迷宫的行数和列数。 接下来 n 行,每行一个长为 m 的字符串,表示整个迷宫的布局。字符’.‘表示空地,’#'表示墙,'S’表示起点,'T’表示出口。

输出: 输出从起点到出口最少需要走的步数。

样例: 输入:

复制

3 3
S#T
.#.
...

输出:

复制

6

来源: 深搜 递归 广搜

在解决迷宫问题时,尤其是寻找从起点到终点的最短路径时,广度优先搜索(BFS)是一种非常高效且常用的方法。本文将详细解析一个基于 BFS 的 Python 代码,帮助你理解其工作原理和实现细节。

1. 问题背景

迷宫问题是一个经典的路径搜索问题。给定一个二维迷宫,起点为 S,终点为 T,迷宫中包含可通行的格子(用 . 表示)和障碍物(用 # 表示)。目标是找到从起点到终点的最短路径长度。

2. 为什么选择 BFS?

广度优先搜索(BFS)是一种逐层扩展的搜索算法,适用于无权图(迷宫中每个格子的移动代价相同)的最短路径问题。BFS 的核心思想是从起点开始,逐层扩展所有可能的路径,直到找到终点。由于 BFS 按层扩展,最先到达终点的路径一定是最短路径。

3. 代码解析
3.1 输入迷宫数据

Python复制

# 输入网格的行数和列数
n, m = map(int, input().split())
# 输入网格状态
a = [list(input()) for _ in range(n)]
  • 这部分代码首先读取迷宫的行数 n 和列数 m

  • 然后逐行读取迷宫的布局,存储为一个二维字符数组 a。每个格子的值可以是:

    • S:起点。

    • T:终点。

    • .:可通行的格子。

    • #:障碍物。

3.2 定义方向数组

Python复制

# 定义方向数组
dx = [0, 0, 1, -1]  # 行变化(右、左、下、上)
dy = [1, -1, 0, 0]  # 列变化
  • 这两个数组定义了四个可能的移动方向:右、左、下、上。

  • 通过索引 i,可以从 dxdy 中获取对应方向的行和列偏移量。

3.3 找到起点和终点

Python复制

# 找到起点 'S' 和终点 'T' 的位置
start_x, start_y = None, None
end_x, end_y = None, None
for i in range(n):for j in range(m):if a[i][j] == 'S':start_x, start_y = i, jelif a[i][j] == 'T':end_x, end_y = i, j
  • 遍历迷宫,找到起点 S 和终点 T 的坐标。

  • 如果迷宫中不存在起点或终点,程序将无法正常运行,因此需要确保输入的迷宫包含 ST

3.4 初始化访问标记数组

Python复制

# 初始化访问标记数组
vis = [[False] * m for _ in range(n)]
  • 创建一个与迷宫大小相同的二维数组 vis,用于记录每个格子是否被访问过。

  • 初始时,所有格子标记为未访问(False)。

3.5 BFS 函数实现

Python复制

from collections import dequedef bfs(start_x, start_y):queue = deque([(start_x, start_y, 0)])  # 队列中存储 (x, y, 步数)vis[start_x][start_y] = True  # 标记起点为已访问while queue:xx, yy, steps = queue.popleft()  # 当前格子及步数# 如果到达终点,返回步数if xx == end_x and yy == end_y:return steps# 遍历四个方向for i in range(4):x, y = xx + dx[i], yy + dy[i]if 0 <= x < n and 0 <= y < m and not vis[x][y] and a[x][y] != '#':vis[x][y] = True  # 标记为已访问queue.append((x, y, steps + 1))  # 加入队列并步数加1return -1  # 如果没有找到路径,返回 -1
  • 队列初始化:使用 deque 创建一个队列,初始时将起点 (start_x, start_y) 和步数 0 加入队列。

  • 逐层扩展:从队列中取出一个格子 (xx, yy),检查是否到达终点。如果是,则返回当前步数。

  • 扩展相邻格子:对于当前格子的四个相邻格子,检查是否在迷宫范围内、未被访问且不是障碍物。如果是,则标记为已访问,并将其加入队列,步数加1。

  • 回溯:如果队列为空且未找到终点,返回 -1,表示无路径。

3.6 调用 BFS 并输出结果

Python复制

# 从起点开始 BFS
if start_x is not None and end_x is not None:shortest_path = bfs(start_x, start_y)print(shortest_path)
else:print("未找到起点或终点")
  • 调用 bfs 函数,从起点开始搜索。

  • 如果找到最短路径,输出路径长度;否则,输出提示信息。

4. 代码运行逻辑
  1. 初始化:读取迷宫数据,找到起点和终点,初始化访问标记数组。

  2. BFS 搜索

    • 从起点开始,逐层扩展所有可能的路径。

    • 使用队列存储当前层的格子及其步数。

    • 每次从队列中取出一个格子,检查是否到达终点。

    • 如果未到达终点,扩展其相邻格子,并将未访问的格子加入队列。

  3. 终止条件

    • 如果到达终点,返回当前步数。

    • 如果队列为空且未找到终点,返回 -1

5. 输入输出示例
输入:

复制

3 3
S#T
.#.
...
输出:
4
6. BFS 的优势
  • 时间复杂度:BFS 的时间复杂度为 O(n×m),适合迷宫规模较大的情况。

  • 空间复杂度:BFS 的空间复杂度为 O(n×m),主要用于存储访问标记数组和队列。

  • 最短路径保证:BFS 按层扩展,最先到达终点的路径一定是最短路径。

7. 总结

本文通过详细解析基于 BFS 的代码,展示了如何高效地解决迷宫最短路径问题。BFS 的逐层扩展特性使其成为解决此类问题的理想选择。通过合理使用队列和访问标记数组,代码能够高效地找到从起点到终点的最短路径,而不会出现超时问题。

完整代码

from collections import deque# 输入网格的行数和列数
n, m = map(int, input().split())
# 输入网格状态
a = [list(input()) for _ in range(n)]# 定义方向数组
dx = [0, 0, 1, -1]  # 行变化(右、左、下、上)
dy = [1, -1, 0, 0]  # 列变化# 找到起点 'S' 和终点 'T' 的位置
start_x, start_y = None, None
end_x, end_y = None, None
for i in range(n):for j in range(m):if a[i][j] == 'S':start_x, start_y = i, jelif a[i][j] == 'T':end_x, end_y = i, j# 初始化访问标记数组
vis = [[False] * m for _ in range(n)]# BFS 函数
def bfs(start_x, start_y):queue = deque([(start_x, start_y, 0)])  # 队列中存储 (x, y, 步数)vis[start_x][start_y] = True  # 标记起点为已访问while queue:xx, yy, steps = queue.popleft()  # 当前格子及步数# 如果到达终点,返回步数if xx == end_x and yy == end_y:return steps# 遍历四个方向for i in range(4):x, y = xx + dx[i], yy + dy[i]if 0 <= x < n and 0 <= y < m and not vis[x][y] and a[x][y] != '#':vis[x][y] = True  # 标记为已访问queue.append((x, y, steps + 1))  # 加入队列并步数加1return -1  # 如果没有找到路径,返回 -1# 从起点开始 BFS
if start_x is not None and end_x is not None:shortest_path = bfs(start_x, start_y)print(shortest_path)
else:print("未找到起点或终点")

队列知识及其在广度优先搜索(BFS)中的应用

队列(Queue)是一种先进先出(First-In-First-Out,FIFO)的数据结构,广泛应用于算法和程序设计中。理解队列的使用,尤其是它在广度优先搜索(BFS)中的关键作用,对于解决路径搜索问题(如迷宫问题)至关重要。


1. 队列的基本概念

队列是一种线性数据结构,其操作类似于现实生活中的排队场景。队列的主要操作包括:

  • 入队(Enqueue):在队列的尾部添加一个元素。

  • 出队(Dequeue):从队列的头部移除一个元素。

  • 查看队头(Peek/Front):查看队列头部的元素,但不移除它。 

队列的特点是先进先出,即最早进入队列的元素会最先被移除。


5. 使用队列的 BFS 与不使用队列的 DFS 的对比

特性BFS(使用队列)DFS(不使用队列)
扩展顺序逐层扩展深度优先
数据结构队列(先进先出)栈(后进先出)
适用场景最短路径问题所有路径问题
时间复杂度O(n×m)O(4n×m)
空间复杂度O(n×m)O(n×m)

 6. 总结

队列是 BFS 的核心数据结构,它通过先进先出的特性确保了 BFS 的逐层扩展。在解决最短路径问题时,BFS 使用队列能够高效地找到从起点到终点的最短路径,而不会像 DFS 那样因深度优先搜索而导致超时。理解队列的使用,对于掌握 BFS 算法至关重要。

希望这篇文章能帮助你更好地理解队列在 BFS 中的应用。如果你对队列或 BFS 仍有疑问,欢迎随时提问!

相关文章:

(算法竞赛)使用广度优先搜索(BFS)解决迷宫最短路径问题

在这个充满奇思妙想的世界里&#xff0c;每一次探索都像是打开了一扇通往新世界的大门。今天&#xff0c;我们将踏上一段特别的旅程&#xff0c;去揭开那些隐藏在代码、算法、数学谜题或生活智慧背后的秘密。&#x1f389;&#x1f60a; 所以&#xff0c;系好安全带&#xff0…...

Sqoop源码修改:增加落地HDFS文件数与MapTask数量一致性检查

个人博客地址&#xff1a;Sqoop源码修改&#xff1a;增加落地HDFS文件数与MapTask数量一致性检查 | 一张假钞的真实世界 本篇是对记录一次Sqoop从MySQL导入数据到Hive问题的排查经过的补充。 Sqoop 命令通过 bin 下面的脚本调用&#xff0c;调用如下&#xff1a; exec ${HAD…...

嵌入式系统|DMA和SPI

文章目录 DMA&#xff08;直接内存访问&#xff09;DMA底层原理1. 关键组件2. 工作机制3. DMA传输模式 SPI&#xff08;串行外设接口&#xff09;SPI的基本原理SPI连接示例 DMA与SPI的共同作用 DMA&#xff08;直接内存访问&#xff09; 类型&#xff1a;DMA是一种数据传输接口…...

leetcode——将有序数组转化为二叉搜索树(java)

给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵 平衡 二叉搜索树。 示例 1&#xff1a; 输入&#xff1a;nums [-10,-3,0,5,9] 输出&#xff1a;[0,-3,9,-10,null,5] 解释&#xff1a;[0,-10,5,null,-3,null,9] 也将被视为正确答…...

冯诺依曼结构和进程概念及其相关的内容的简单介绍

目录 ​编辑 冯诺依曼体系结构 操作系统(Operator System) 进程 引入 基本概念 描述进程-PCB task_ struct内容分类 进程 ID (PID)和查看进程 进程状态: 进程创建: 进程终止: 进程间通信 (IPC): 冯诺依曼体系结构 冯诺依曼体系结构是现代计算机的基础架构&#xf…...

Native Memory Tracking 与 RSS的差异问题

一 问题现象 前一段时间用nmt查看jvm进程的栈区占用的内存大小。测试代码如下 public class ThreadOOM {public static void main(String[] args) {int i 1;while (i < 3000) {Thread thread new TestThread();thread.start();System.out.println("thread : "…...

在K8s中部署动态nfs存储provisioner

背景 之前&#xff0c;我已经在一台worker node上安装了local lvm 的provisioner来模拟需要本地高IOPS的数据库等stafeful应用的实现。 为了后续给虚拟机里的K8s集群安装可用的metrics和logs监控系统&#xff08;metrics和logs的时序数据库需要永久存储&#xff09;&#xff0…...

家庭财务管理系统的设计与实现

标题:家庭财务管理系统的设计与实现 内容:1.摘要 摘要&#xff1a;随着家庭经济的日益复杂&#xff0c;家庭财务管理变得越来越重要。本文旨在设计并实现一个功能强大的家庭财务管理系统&#xff0c;以帮助用户更好地管理家庭财务。通过对家庭财务管理需求的分析&#xff0c;我…...

数据结构-Stack和栈

1.栈 1.1什么是栈 栈是一种特殊的线性表&#xff0c;只允许在固定的一段进行插入和删除操作&#xff0c;进行插入和删除操作的一段称为栈顶&#xff0c;另一端称为栈底。 栈中的数据元素遵顼后进先出LIFO&#xff08;Last In First Out&#xff09;的原则&#xff0c;就像一…...

使用vhd虚拟磁盘安装两个win10系统

使用vhd虚拟磁盘安装两个win10系统 前言vhd虚拟磁盘技术简介准备工具开始动手实践1.winX选择磁盘管理2.选择“操作”--“创建VHD”3.自定义一个位置&#xff0c;输入虚拟磁盘大小4.右键初始化磁盘5.选择GPT分区表格式6.右键新建简单卷7.给卷起个名字&#xff0c;用于区分8.打开…...

代码随想录34 动态规划

1.经典问题&#xff1a; 背包问题 打家劫舍 斐波那契数列 爬楼梯问题 股票问题 2.dp数组以及下标的含义 3.递推公式 3.dp数组初始化 4.遍历顺序 5.打印数组 leetcode509.斐波那契数列 1.确定dp[i]含义 dp[i]第i个斐波那契数的值为dp[i] 2.递推公式&#xff1a;dp[…...

【2025年最新版】Java JDK安装、环境配置教程 (图文非常详细)

文章目录 【2025年最新版】Java JDK安装、环境配置教程 &#xff08;图文非常详细&#xff09;1. JDK介绍2. 下载 JDK3. 安装 JDK4. 配置环境变量5. 验证安装6. 创建并测试简单的 Java 程序6.1 创建 Java 程序&#xff1a;6.2 编译和运行程序&#xff1a;6.3 在显示或更改文件的…...

Shell特殊状态变量以及常用内置变量总结

目录 1. 特殊的状态变量 1.1 $?&#xff08;上一个命令的退出状态&#xff09; 1.2 $$&#xff08;当前进程的 PID&#xff09; 1.3 $!&#xff08;后台进程的 PID&#xff09; 1.4 $_&#xff08;上一条命令的最后一个参数&#xff09; 2.常用shell内置变量 2.1 echo&…...

【4Day创客实践入门教程】Day4 迈向高手之路——进一步学习!

Day4 迈向高手之路——进一步学习&#xff01; 目录 Day4 迈向高手之路——进一步学习&#xff01;更多的开发板外壳制作 Day0 创想启程——课程与项目预览Day1 工具箱构建——开发环境的构建Day2 探秘微控制器——单片机与MicroPython初步Day3 实战演练——桌面迷你番茄钟Day4…...

EtherCAT-快速搭建

EtherCAT-快速搭建 快速简介 快速简介 EtherCAT现场总线协议是由德国倍福公司在2003年提出的&#xff0c;该通讯协议拓扑结构十分灵活&#xff0c;数据传输速度快&#xff0c;同步特性好&#xff0c;可以形成各种网络拓扑结构。倍福公司推出了自己的ASIC专用芯片有ET1100和ET1…...

【设计测试用例自动化测试性能测试 实战篇】

&#x1f308;个人主页&#xff1a;努力学编程’ ⛅个人推荐&#xff1a; c语言从初阶到进阶 JavaEE详解 数据结构 ⚡学好数据结构&#xff0c;刷题刻不容缓&#xff1a;点击一起刷题 &#x1f319;心灵鸡汤&#xff1a;总有人要赢&#xff0c;为什么不能是我呢 设计测试用例…...

DBeaver连接MySQL提示Access denied for user ‘‘@‘ip‘ (using password: YES)的解决方法

在使用DBeaver连接MySQL数据库时&#xff0c;如果遇到“Access denied for user ip (using password: YES)”的错误提示&#xff0c;说明用户认证失败。此问题通常与数据库用户权限、配置错误或网络设置有关。本文将详细介绍解决此问题的步骤。 一、检查用户名和密码 首先&am…...

【MySQL — 数据库增删改查操作】深入解析MySQL的 Update 和 Delete 操作

1. 测试数据 mysql> select* from exam1; ----------------------------------------- | id | name | Chinese | Math | English | ----------------------------------------- | 1 | 唐三藏 | 67.0 | 98.0 | 56.0 | | 2 | 孙悟空 | 87.0 | 78.…...

04树 + 堆 + 优先队列 + 图(D1_树(D1_基本介绍))

目录 一、什么是树&#xff1f; 二、相关术语 根结点 边 叶子结点 兄弟结点 祖先结点 结点的大小 树的层 结点的深度 结点的高度 树的高度 斜树 一、什么是树&#xff1f; 树是一种类似于链表的数据结构&#xff0c;不过链表的结点是以线性方式简单地指向其后继结…...

【Proteus仿真】【51单片机】多功能计算器系统设计

目录 一、主要功能 二、使用步骤 三、硬件资源 四、软件设计 五、实验现象 联系作者 一、主要功能 1、LCD1602液晶显示 2、矩阵按键​ 3、加减乘除&#xff0c;开方运算 4、带符号运算 5、最大 999*999 二、使用步骤 基于51单片机多功能计算器 包含&#xff1a;程序&…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...