当前位置: 首页 > news >正文

实测数据处理(Wk算法处理)——SAR成像算法系列(十二)

系列文章目录

《SAR学习笔记-SAR成像算法系列(一)》

《wk算法-SAR成像算法系列(五)》


文章目录

前言

一、算法流程

1.1、回波信号生成

2.2 Stolt插值

2.3 距离脉冲压缩

2.4 方位脉冲压缩

2.5 SAR成像

二、仿真实验

2.1、仿真参数

2.2、Wk处理结果

三、实测处理

总结


前言

         前面介绍了各种SAR成像算法,下面将介绍如何用各SAR成像算法处理实测数据。本文将用Wk算法处理实测数据。


一、算法流程

1.1、回波信号生成

          接收的回波信号经过下变频得:

r\left ( \tau ,t \right )=\sigma w_{a}\left ( t-t_{c}\right )w_{r}\left ( \tau -\frac{2R\left ( t \right )}{c} \right )e^{-j\frac{4\pi f_{0}R\left ( t \right )}{c}}e^{j\pi K\left ( \tau-\frac{2R\left ( t \right )}{c} \right )^{2}}

其中t_{c}​为波束中心经过目标的时刻,R\left ( t \right )=\sqrt{R_{0}^{2}+V^{2}\left ( t-t_{0} \right )^{2}}​,t_{0}​为零多普勒时刻,R_{0}​为对应的距离。

       假设发射的脉冲为宽度为T_{p}​的矩形脉冲,则信号在距离向的范围函数为:

w_{r}\left ( \tau \right )=rect\left ( \frac{\tau }{T_{p}} \right )

        假设天线的方向图为p\left ( \theta \right ),雷达与目标的斜视角变化函数为\theta \left ( t \right ),则信号在方位向的范围函数为:

w_{a}\left ( t \right )=p^{2}\left ( \theta \left ( t \right ) \right )\approx rect\left ( \frac{t }{T_{sym}} \right )

       式(1)的距离频域-方位频域表达式为:

r_{1}\left ( f_{\tau} ,f_{t} \right )=\sigma W_{a}\left ( f_{t}-f_{dop} \right )W_{r}\left ( f_{\tau} \right )e^{-j2\pi f_{t}t_{0}}e^{-j\frac{4\pi R_{0}} {c} \sqrt{\left ( f_{0}+f_{\tau }\right)^2-\frac{c^2 f_{t}^{2}}{4V^2}}}e^{-j\frac{\pi f_{\tau }^{2}}{K} }\, \, \, \, \, \, \, \, \, \, \left ( 1 \right )

       其中 f_{t}\in \left (-\text{PRF}/2,\text{PRF}/2 \right ) ,当存在斜视角时,f_{dop}\neq 0。需要对信号r\left ( \tau ,t \right )进行去多普勒中心频率,

r\left ( \tau ,t \right )=\sigma w_{a}\left ( t-t_{c}\right )w_{r}\left ( \tau -\frac{2R\left ( t \right )}{c} \right )e^{-j\frac{4\pi f_{0}R\left ( t \right )}{c}}e^{j\pi K\left ( \tau-\frac{2R\left ( t \right )}{c} \right )^{2}}e^{-j2\pi f_{dop}t}

去除之后信号的距离多普勒域表达式为

r_{1}\left ( f_{\tau} ,f_{t}+f_{dop} \right )=\sigma W_{a}\left ( f_{t} \right )W_{r}\left ( f_{\tau} \right )e^{-j2\pi \left (f_{t} +f_{dop} \right )t_{0}}e^{-j\frac{4\pi R_{0}} {c} \sqrt{\left ( f_{0}+f_{\tau }\right)^2-\frac{c^2 \left (f_{t} +f_{dop} \right )^{2}}{4V^2}}}e^{-j\frac{\pi f_{\tau }^{2}}{K} }\, \, \, \, \, \, \, \, \, \, \left ( 1 \right )

f_{t}\equiv f_{t}+f_{dop}\in \left (f_{dop}-\text{PRF}/2,f_{dop}+\text{PRF}/2 \right )

2.2 Stolt插值

二维频域滤波器:

H_{RFM}\left ( f_{\tau } ,f_{t}\right )=e^{j\frac{4\pi R_{ref}} {c} \sqrt{\left ( f_{0}+f_{\tau }\right)^2-\frac{c^2 f_{t}^{2}}{4V^2}}}e^{j\frac{\pi f_{\tau }^{2}}{K} }

二维频域滤波后,信号为:

r_{2}\left ( f_{\tau} ,f_{t} \right )=r_{1}\left ( f_{\tau} ,f_{t} \right )H_{RFM}\left ( f_{\tau } ,f_{t}\right )\\ =\sigma W_{a}\left ( f_{t}-f_{dop} \right )W_{r}\left ( f_{\tau} \right )e^{-j2\pi f_{t}t_{c}}e^{-j\frac{4\pi \left ( R_{0}-R_{ref} \right )} {c} \sqrt{\left ( f_{0}+f_{\tau }\right)^2-\frac{c^2 f_{t}^{2}}{4V^2}}}

通过插值实现如下校正:

\sqrt{\left ( f_{0}+f_{\tau }\right)^2-\frac{c^2 f_{t}^{2}}{4V^2}}\rightarrow f_{0}+f_{\tau }^{'}

插值后信号为:

r_{3}\left ( f_{\tau}^{'} ,f_{t} \right ) =\sigma W_{a}\left ( f_{t}-f_{dop} \right )W_{r}\left ( f_{\tau} \right )e^{-j2\pi f_{t}t_{c}}e^{-j\frac{4\pi \left ( R_{0}-R_{ref} \right )} {c} \left ( f_{0}+f_{\tau }^{'} \right )}

2.3 距离脉冲压缩

距离向IFFT:

r_{4}\left ( \tau^{'},f_{t} \right ) =\int r_{3}\left ( f_{\tau}^{'},f_{t} \right )e^{j2\pi f_{\tau } \tau^{'} }d\tau^{'} \\ =\sigma W_{a}\left ( f_{t}-f_{dop} \right )sinc\left ( B_{r}\left ( \tau^{'} -\frac{2\left ( R_{0}-R_{ref} \right )}{c} \right ) \right ) e^{-j2\pi f_{t}t_{c}}e^{-j\frac{4\pi \left ( R_{0}-R_{ref} \right )} {\lambda } }

2.4 方位脉冲压缩

方位向IFFT:

r_{5}\left ( \tau^{'},t \right ) =\int r_{4}\left ( \tau^{'},f_{t} \right )e^{j2\pi f_{t } t }dt \\ =\sigma sinc\left ( B_{r}\left ( \tau^{'} -\frac{2\left ( R_{0}-R_{ref} \right )}{c} \right ) \right )sinc\left ( B_{a}\left ( t -t_{c} \right ) \right ) e^{-j\frac{4\pi \left ( R_{0}-R_{ref} \right )} {\lambda } }

2.5 SAR成像

最终SAR图像为:

I\left ( R_{0},A_{0} \right )=r_{5}\left ( \frac{2\left ( R_{0}-R_{ref} \right )}{c} ,\frac{A_{0}}{V}+R_0 \tan \theta \right )

二、仿真实验

2.1、仿真参数

        信号带宽20 MHz,距离分辨率7.5m;天线尺寸30m,合成孔径长度11180.3m,距离横向分辨率15.0m。天线波束中心斜视角3.2°。 

点目标分布                                                  SAR回波信号

2.2、Wk处理结果

距离脉压结果                                         距离脉压结果 (放大)

Wk成像结果                                         Wk成像结果 (放大)

投影到地面的SAR图像                      投影到地面的SAR图像(放大)

三、实测处理

图3-1.SAR照射区域的光学地图

        图3-1为SAR实测数据的光学地图。图3-2为图1-1所示区域SAR二维回波信号。图3-3为距离脉压结果。

图3-2. SAR回波信号

图3-3. 距离脉压结果

图3-4为Wk算法所得最终图像,可以看出定位图像清晰。右图为左图的局部放大。

图3-4 方位脉压结果


总结

       本文主要介绍Wk算法实现步骤,并从仿真数据和实测数据两个角度展示了Wk算法的效果。转载请附上链接【杨(_> <_)】的博客_CSDN博客-信号处理,SAR,代码实现领域博主。

相关文章:

实测数据处理(Wk算法处理)——SAR成像算法系列(十二)

系列文章目录 《SAR学习笔记-SAR成像算法系列&#xff08;一&#xff09;》 《wk算法-SAR成像算法系列&#xff08;五&#xff09;》 文章目录 前言 一、算法流程 1.1、回波信号生成 2.2 Stolt插值 2.3 距离脉冲压缩 2.4 方位脉冲压缩 2.5 SAR成像 二、仿真实验 2.1、仿真参数…...

P1775 石子合并(弱化版)

P1775 石子合并&#xff08;弱化版&#xff09; 题目描述 设有 N ( N ≤ 300 ) N(N \le 300) N(N≤300) 堆石子排成一排&#xff0c;其编号为 1 , 2 , 3 , ⋯ , N 1,2,3,\cdots,N 1,2,3,⋯,N。每堆石子有一定的质量 m i ( m i ≤ 1000 ) m_i\ (m_i \le 1000) mi​ (mi​≤…...

一文回顾讲解Java中的集合框架

这篇文章以提问的方式总结回顾下Java中常见的集合框架 Java中的集合框架可以分为两条大的支线&#xff1a;Collection和Map Collection,主要由List、Set、Queue组成&#xff1b; List是有序&#xff0c;可重复的集合&#xff0c;典型代表有封装了动态数组的ArrayList和封装了链…...

多模态论文笔记——NaViT

大家好&#xff0c;这里是好评笔记&#xff0c;公主号&#xff1a;Goodnote&#xff0c;专栏文章私信限时Free。本文详细解读多模态论文NaViT&#xff08;Native Resolution ViT&#xff09;&#xff0c;将来自不同图像的多个patches打包成一个单一序列——称为Patch n’ Pack—…...

智能小区物业管理系统推动数字化转型与提升用户居住体验

内容概要 在当今快速发展的社会中&#xff0c;智能小区物业管理系统的出现正在改变传统的物业管理方式。这种系统不仅仅是一种工具&#xff0c;更是一种推动数字化转型的重要力量。它通过高效的技术手段&#xff0c;将物业管理与用户居住体验紧密结合&#xff0c;无疑为社区带…...

I2C基础知识

引言 这里祝大家新年快乐&#xff01;前面我们介绍了串口通讯协议&#xff0c;现在我们继续来介绍另一种常见的简单的串行通讯方式——I2C通讯协议。 一、什么是I2C I2C 通讯协议&#xff08;Inter-Integrated Circuit&#xff09;是由Phiilps公司在上个世纪80年代开发的&#…...

护眼好帮手:Windows显示器调节工具

在长时间使用电脑的过程中&#xff0c;显示器的亮度和色温对眼睛的舒适度有着重要影响。传统的显示器调节方式不仅操作繁琐&#xff0c;而且在低亮度下容易导致色彩失真。因此&#xff0c;今天我想为大家介绍一款适用于Windows系统的护眼工具&#xff0c;它可以帮助你轻松调节显…...

MongoDb user自定义 role 添加 action(collStats, EstimateDocumentCount)

使用 mongosh cd mongsh_bin_path mongosh “mongodb://user:passip:port/db”这样就直接进入了对应的db 直接输入&#xff1a; 这样 role “read_only_role" 就获得了3个 action&#xff0c; 分别是 查询&#xff0c;列举集合&#xff0c;集合元数据查询 P.S: 如果没有 …...

mysql学习笔记-数据库其他调优策略

1、如何定位调优问题 用户的反馈&#xff08;主要&#xff09; 日志分析&#xff08;主要&#xff09; 服务器资源使用监控 数据库内部状况监控 2、调优的维度和步骤 第1步&#xff1a;选择适合的 DBMS 第2步&#xff1a;优化表设计 第3步&#xff1a;优化逻辑查询 第4步&am…...

Office / WPS 公式、Mathtype 公式输入花体字、空心字

注&#xff1a;引文主要看注意事项。 1、Office / WPS 公式中字体转换 花体字 字体选择 “Eulid Math One” 空心字 字体选择 “Eulid Math Two” 使用空心字时&#xff0c;一般不用斜体&#xff0c;取消勾选 “斜体”。 2、Mathtype 公式输入花体字、空心字 2.1 直接输…...

(done) MIT6.S081 2023 学习笔记 (Day6: LAB5 COW Fork)

网页&#xff1a;https://pdos.csail.mit.edu/6.S081/2023/labs/cow.html 任务1&#xff1a;Implement copy-on-write fork(hard) (完成) 现实中的问题如下&#xff1a; xv6中的fork()系统调用会将父进程的用户空间内存全部复制到子进程中。如果父进程很大&#xff0c;复制过程…...

SYN Flooding的攻击原理

SYN Flooding是一种常见的网络攻击方式&#xff0c;属于拒绝服务攻击&#xff08;DoS&#xff09;的一种&#xff0c;其攻击原理主要是利用了TCP协议的三次握手过程&#xff0c;以下是具体介绍&#xff1a; TCP三次握手正常流程 第一次握手&#xff1a;客户端向服务器发送一个…...

MYSQL--一条SQL执行的流程,分析MYSQL的架构

文章目录 第一步建立连接第二部解析 SQL第三步执行 sql预处理优化阶段执行阶段索引下推 执行一条select 语句中间会发生什么&#xff1f; 这个是对 mysql 架构的深入理解。 select * from product where id 1;对于mysql的架构分层: mysql 架构分成了 Server 层和存储引擎层&a…...

cmd命令行无法进入D:盘怎么办

我找到了一个方法就是 增加一个/d cd /d d: 如下图,我不仅可以进入d盘符下&#xff0c;还可以访问盘符下的文件夹...

CRC校验详解

CRC校验即循环冗余校验(Cyclic Redundancy Check),是基于数据计算一组效验码,用于核对数据传输过程中是否被更改或传输错误。首先看两个概念,后续会用到。 模2除法:也叫模2运算,就是结果除以2后取余数。模2除法每一位除的结果不影响其它位,即不向上一位借位,所以实际…...

windows系统本地部署deepseek及webui界面

一、官网下载ollama 二、使用ollama下载deepseek r1模型 根据显存选择多少b的参数的模型 ollama run deepseek-r1:32b 三、安装conda curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe Miniconda3-latest-Windows-x86_64.exe 四、构建…...

(算法竞赛)使用广度优先搜索(BFS)解决迷宫最短路径问题

在这个充满奇思妙想的世界里&#xff0c;每一次探索都像是打开了一扇通往新世界的大门。今天&#xff0c;我们将踏上一段特别的旅程&#xff0c;去揭开那些隐藏在代码、算法、数学谜题或生活智慧背后的秘密。&#x1f389;&#x1f60a; 所以&#xff0c;系好安全带&#xff0…...

Sqoop源码修改:增加落地HDFS文件数与MapTask数量一致性检查

个人博客地址&#xff1a;Sqoop源码修改&#xff1a;增加落地HDFS文件数与MapTask数量一致性检查 | 一张假钞的真实世界 本篇是对记录一次Sqoop从MySQL导入数据到Hive问题的排查经过的补充。 Sqoop 命令通过 bin 下面的脚本调用&#xff0c;调用如下&#xff1a; exec ${HAD…...

嵌入式系统|DMA和SPI

文章目录 DMA&#xff08;直接内存访问&#xff09;DMA底层原理1. 关键组件2. 工作机制3. DMA传输模式 SPI&#xff08;串行外设接口&#xff09;SPI的基本原理SPI连接示例 DMA与SPI的共同作用 DMA&#xff08;直接内存访问&#xff09; 类型&#xff1a;DMA是一种数据传输接口…...

leetcode——将有序数组转化为二叉搜索树(java)

给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵 平衡 二叉搜索树。 示例 1&#xff1a; 输入&#xff1a;nums [-10,-3,0,5,9] 输出&#xff1a;[0,-3,9,-10,null,5] 解释&#xff1a;[0,-10,5,null,-3,null,9] 也将被视为正确答…...

冯诺依曼结构和进程概念及其相关的内容的简单介绍

目录 ​编辑 冯诺依曼体系结构 操作系统(Operator System) 进程 引入 基本概念 描述进程-PCB task_ struct内容分类 进程 ID (PID)和查看进程 进程状态: 进程创建: 进程终止: 进程间通信 (IPC): 冯诺依曼体系结构 冯诺依曼体系结构是现代计算机的基础架构&#xf…...

Native Memory Tracking 与 RSS的差异问题

一 问题现象 前一段时间用nmt查看jvm进程的栈区占用的内存大小。测试代码如下 public class ThreadOOM {public static void main(String[] args) {int i 1;while (i < 3000) {Thread thread new TestThread();thread.start();System.out.println("thread : "…...

在K8s中部署动态nfs存储provisioner

背景 之前&#xff0c;我已经在一台worker node上安装了local lvm 的provisioner来模拟需要本地高IOPS的数据库等stafeful应用的实现。 为了后续给虚拟机里的K8s集群安装可用的metrics和logs监控系统&#xff08;metrics和logs的时序数据库需要永久存储&#xff09;&#xff0…...

家庭财务管理系统的设计与实现

标题:家庭财务管理系统的设计与实现 内容:1.摘要 摘要&#xff1a;随着家庭经济的日益复杂&#xff0c;家庭财务管理变得越来越重要。本文旨在设计并实现一个功能强大的家庭财务管理系统&#xff0c;以帮助用户更好地管理家庭财务。通过对家庭财务管理需求的分析&#xff0c;我…...

数据结构-Stack和栈

1.栈 1.1什么是栈 栈是一种特殊的线性表&#xff0c;只允许在固定的一段进行插入和删除操作&#xff0c;进行插入和删除操作的一段称为栈顶&#xff0c;另一端称为栈底。 栈中的数据元素遵顼后进先出LIFO&#xff08;Last In First Out&#xff09;的原则&#xff0c;就像一…...

使用vhd虚拟磁盘安装两个win10系统

使用vhd虚拟磁盘安装两个win10系统 前言vhd虚拟磁盘技术简介准备工具开始动手实践1.winX选择磁盘管理2.选择“操作”--“创建VHD”3.自定义一个位置&#xff0c;输入虚拟磁盘大小4.右键初始化磁盘5.选择GPT分区表格式6.右键新建简单卷7.给卷起个名字&#xff0c;用于区分8.打开…...

代码随想录34 动态规划

1.经典问题&#xff1a; 背包问题 打家劫舍 斐波那契数列 爬楼梯问题 股票问题 2.dp数组以及下标的含义 3.递推公式 3.dp数组初始化 4.遍历顺序 5.打印数组 leetcode509.斐波那契数列 1.确定dp[i]含义 dp[i]第i个斐波那契数的值为dp[i] 2.递推公式&#xff1a;dp[…...

【2025年最新版】Java JDK安装、环境配置教程 (图文非常详细)

文章目录 【2025年最新版】Java JDK安装、环境配置教程 &#xff08;图文非常详细&#xff09;1. JDK介绍2. 下载 JDK3. 安装 JDK4. 配置环境变量5. 验证安装6. 创建并测试简单的 Java 程序6.1 创建 Java 程序&#xff1a;6.2 编译和运行程序&#xff1a;6.3 在显示或更改文件的…...

Shell特殊状态变量以及常用内置变量总结

目录 1. 特殊的状态变量 1.1 $?&#xff08;上一个命令的退出状态&#xff09; 1.2 $$&#xff08;当前进程的 PID&#xff09; 1.3 $!&#xff08;后台进程的 PID&#xff09; 1.4 $_&#xff08;上一条命令的最后一个参数&#xff09; 2.常用shell内置变量 2.1 echo&…...

【4Day创客实践入门教程】Day4 迈向高手之路——进一步学习!

Day4 迈向高手之路——进一步学习&#xff01; 目录 Day4 迈向高手之路——进一步学习&#xff01;更多的开发板外壳制作 Day0 创想启程——课程与项目预览Day1 工具箱构建——开发环境的构建Day2 探秘微控制器——单片机与MicroPython初步Day3 实战演练——桌面迷你番茄钟Day4…...