当前位置: 首页 > news >正文

DeepSeekMoE:迈向混合专家语言模型的终极专业化

一、结论写在前面

论文提出了MoE语言模型的DeepSeekMoE架构,目的是实现终极的专家专业化(expert specialization)。通过细粒度的专家分割和共享专家隔离,DeepSeekMoE相比主流的MoE架构实现了显著更高的专家专业化和性能。从较小的2B参数规模开始,论文验证了DeepSeekMoE的优势,展示了其接近MoE模型上限性能的能力。此外,论文证明DeepSeekMoE具有比GShard更高水平的专家特化。

放大到16B参数规模,论文在2T标记上训练DeepSeekMoE 16B,并展示了其与DeepSeek 7B和LLaMA2 7B可比的卓越性能,仅需要大约40%的计算量。另外,论文进行了监督微调用于对齐,基于DeepSeekMoE 16B构建了一个MoE聊天模型,进一步展示了其适应性和通用性。此外,论文初步探索以将DeepSeekMoE放大到145B参数:DeepSeekMoE 145B相对于GShard架构仍保持实质性优势,并展示了与DeepSeek 67B可比的性能,仅使用28.5%(可能甚至18.2%)的计算量。

论文公开了了DeepSeekMoE 16B的模型checkpoint,它可以在40GB内存的单GPU上部署。

Figure 1 | DeepSeekMoE 16B与开源模型在Open LLM Leaderboard上的比较。红色虚线是从除DeepSeekMoE 16B之外的所有模型的数据点线性拟合得到的。DeepSeekMoE 16B始终以很大的优势胜过具有类似激活参数数量的模型,并在性能上与LLaMA2 7B相媲美,后者的激活参数数量大约是其2.5倍

二、论文的简单介绍

2.1 论文的背景

最近的研究和实践通过充分的可用训练数据经验性地证明,扩大语言模型的参数和计算预算可以获得显著更强的模型。然而,必须承认的是,将模型扩展到极大规模的努力也与极高的计算成本相关联。考虑到成本,混合专家(Mixture-of-Experts,MoE)架构已成为一种流行的解决方案。它可以实现参数扩展,同时将计算成本保持在适度水平。

尽管MoE架构展示出有前景的潜力,但现有MoE架构可能存在知识杂交(f knowledge hybridity )和知识冗余(knowledge redundancy)的问题,这限制了专家专业化,即每个专家获得非重叠和专注的知识。传统的MoE架构用MoE层代替Transformer中的前馈网络(Feed-Forward Networks,FFN)。每个MoE层由多个专家组成,每个在结构上与标准FFN相同,每个token分配给一个或两个专家。这种架构体现出两个潜在问题:

(1)知识杂交:现有的MoE实践通常采用有限数量的专家(例如8或16),因此分配给特定专家的标记可能会涵盖不同的知识。因此,指定的专家将倾向于在其参数中汇集不同类型的知识,这些知识很难同时利用。

(2)知识冗余:分配给不同专家的token可能需要共同知识。因此,多个专家可能会在各自的参数中收敛到共享知识的获取,从而导致专家参数中的冗余。这些问题共同阻碍了现有MoE实践中的专家专业化,使其无法达到MoE模型的理论上限性能。

2.2 论文的方案

Figure 2 | DeepSeekMoE的示意图。子图(a)展示了具有传统top-2路由策略的MoE层。子图(b)说明了精细的专家细分策略。随后,子图(c)展示了共享专家隔离策略的集成,构成了完整的DeepSeekMoE架构。值得注意的是,在这三种架构中,专家参数和计算成本保持不变
 

DeepSeek MoE设计上述结构的前提在于假设:特定专家能可以覆某种领域知识。专家的细粒度切分可以避免一个专家覆盖太多领域把知识学杂了;共享专家可以让一些公共知识每次都参与计算。

同时期国外开源的Mistral of Experts也放了技术报告,它是完全照着GPT-4解密报告复现的MoE,模型结构就是经典的GShard方式。技术报告里的Sec. 5 Routing analysis展示很多路由工作的特征,这些都是非常新鲜的一手资料。有一些结论很有趣:

Mixtral of Experts

  1. 路由规则与文本的语义主题无关,这意味着专家并不专门精通某一领域的知识。
  2. 路由规则展示出了一定的语法特性,例如,某些关键词经常被分配给同一位专家。
  3. 路由规则还展示了位置的局部性,相邻的token通常被路由到同一位专家,这表明token在句子中的位置与路由选择有关。

结论1是比较颠覆传统认知的,又给了公众号做标题党一次机会。

混合专家系统里根本没专家?开源MoE模型论文引网友热议

那么也就是说按照Mistral报告的观察,DeepSeek-MoE设计的动机可能不太成立。我觉得DeepSeek开发者可以参考Mistral的Sec 5做实验看看结论是否一致。

为应对上述两个潜在问题,论文提出了DeepSeekMoE,这是一种创新的MoE架构,专门设计用于实现终极专家专业化。架构包含两大主要策略:

细粒度专家细分

在专家数量有限的情况下,分配给特定专家的标记更有可能涵盖各种类型的知识。因此,指定的专家将意图在其参数中学习非常不同类型的知识,并且它们很难同时被利用。然而,如果每个标记可以路由到更多的专家,不同的知识将有可能分解并在不同的专家中学到。在这种情况下,每个专家仍然可以保持高水平的专业化,有助于在专家之间实现更专注的知识分布。

为了实现这一目标,在保持一致的专家参数数量和计算成本的同时,通过更细粒度地分割专家。更细致的专家分割使得激活的专家组合更加灵活和适应。具体而言,在图 2(a) 中显示的典型 MoE 架构之上,我们通过将每个专家 FFN 的中间隐藏维度减小到其原始大小的 1/m 倍来将每个专家细分为 m 个较小的专家。由于每个专家变得较小,相应地,我们也增加激活的专家数量到 m 倍,以保持相同的计算成本,如图 2(b) 所示。

从组合的角度看,细粒度专家分割策略极大地增强了激活专家的组合灵活性。举例来说,考虑 N = 16 的情况。典型的 top-2 路由策略可以产生 16 2 = 120 种可能的组合。相比之下,如果每个专家分为 4 个较小的专家,细粒度的路由策略可以产生 64 8 = 4,426,165,368 种潜在的组合。组合灵活性的激增增强了实现更准确和有针对性的知识获取的潜力。

共享专家隔离

在传统的路由策略中,分配给不同专家的标记可能需要一些共同的知识或信息。因此,多个专家可能会在各自的参数中收敛于获取共享知识,从而导致专家参数的冗余。然而,如果有专门负责捕捉和 cons共享知识的专业专家,跨不同上下文的参数冗余将得到缓解。这种冗余的减轻将有助于构建更具参数效率的模型,并拥有更专业化的专家。

为实现这一目标,除了精细的专家细分策略之外,进一步隔离 𝐾𝑠个专家作为共享专家。无论路由模块如何,每个标记都将被确定性地分配给这些共享专家。为了保持恒定的计算成本,其他路由专家中激活的专家的数量将减少 𝐾,如图2(c)所示。

负载平衡考虑

自动学习的路由策略可能会遇到负载不平衡的问题,表现为两个显著的缺陷。首先,存在路由崩溃的风险,即模型始终只选择少数专家,阻止其他专家充分训练。其次,如果专家分布在多个设备上,负载不平衡可能会加剧计算瓶颈。

专家级平衡损失:为了缓解路由崩溃的风险,论文还采用了专家级平衡损失。

设备级平衡损失:除了专家级平衡损失外,论文引入了设备级平衡损失。当旨在缓解计算瓶颈时,就不必在专家级别强制执行严格的平衡约束,因为对负载平衡的过度约束会损害模型性能。相反,论文的主要目标是确保设备之间的平衡计算

2.3 论文的效果

从一个仅有2B参数的适度规模开始,验证了DeepSeekMoE架构的优势。在跨越多种任务的12个零试验或少试验基准测试中进行评估。实证结果表明,DeepSeekMoE 2B大大超过了GShard 2B,甚至匹配了GShard 2.9B,一个更大的MoE模型,具有1.5倍的专家参数和计算量。值得注意的是,DeepSeekMoE 2B的性能几乎接近具有相等参数数量的密集对应物,这为MoE语言模型设定了严格的上限。为了获得更深入的见解,对DeepSeekMoE进行了精心的消融研究和专家专业化分析。这些研究验证了细粒度专家细分和共享专家隔离的有效性,并提供了支持DeepSeekMoE可以实现高水平专家专业化的经验证据。

将模型参数扩大到16B,并在包含2T个标记的大规模语料上训练DeepSeekMoE 16B。评估结果显示,与仅使用约40%的计算量,DeepSeekMoE 16B达到与在相同2T语料上训练的密集模型DeepSeek 7B相当的性能。

还将DeepSeekMoE与开源模型进行了比较,评估结果表明,DeepSeekMoE 16B始终以大幅度超过参数数量相近的模型,并与LLaMA2 7B的性能相当,后者的激活参数数约为前者的2.5倍。图1展示了在Open LLM Leaderboard1上的评估结果。

另外,论文进行了监督微调(SFT)用于对齐,将模型转换为聊天模型。评估结果显示,在聊天设置中,DeepSeekMoE Chat 16B也取得了与DeepSeek Chat 7B和LLaMA2 SFT 7B相当的性能。这些结果鼓舞我们进一步进行扩展DeepSeekMoE到145B的初步尝试。实验结果仍然一致验证了其相对于GShard架构的重大优势。此外,它显示了与DeepSeek 67B相当的性能,仅使用28.5%(可能甚至只有18.2%)的计算量。

Table 1 | 验证实验的评估结果。粗体字表示最佳结果。与其他MoE架构相比,DeepSeekMoE表现出明显的性能优势

Table 2 | DeepSeekMoE、更大的GShard模型和更大的dense模型之间的比较。在“#专家”一行中,𝑎 + 𝑏表示𝑎个共享专家和𝑏个路由专家。在“#激活专家”一行中,𝑎 + 𝑏表示𝑎个激活的共享专家和𝑏个激活的路由专家。DeepSeekMoE在性能上与包含1.5倍专家参数和计算的GShard模型相媲美。此外,DeepSeekMoE几乎接近具有16倍FFN参数的dense模型的性能,这在模型容量方面为MoE模型设定了上限

Figure 3 | DeepSeekMoE的消融研究。为清晰展示,性能经过归一化处理。所有比较的模型具有相同数量的参数和激活参数。我们可以看到,精细的专家细分和共享专家隔离都有助于更强大的整体性能

Figure 4 | 关于禁用顶级路由专家比例的Pile损失。值得注意的是,DeepSeekMoE对禁用顶级路由专家比例的敏感性更大,表明DeepSeekMoE中路由专家之间的冗余较低

Table 3 | DeepSeek 7B和DeepSeekMoE 16B之间的比较。粗体字表示最佳或接近最佳。仅占40.5%的计算量,DeepSeekMoE 16B在性能上与DeepSeek 7B相媲美

Table 4 | LLaMA2 7B和DeepSeekMoE 16B之间的比较。仅占39.6%的计算量,DeepSeekMoE 16B在大多数基准测试上胜过LLaMA2 7B

Table 5 | LLaMA2 SFT 7B、DeepSeek Chat 7B和DeepSeekMoE Chat 16B之间的比较,这三个模型都在相同的SFT数据上进行了微调。与两个7B dense模型相比,DeepSeekMoE Chat 16B在大多数基准测试上仍然在仅占40%的计算量下达到相当或更好的性能

Table 6 | DeepSeek 67B(Dense)和约140B总参数规模的MoE模型之间的比较。在“#专家”和“#激活专家”一行中,𝑎 + 𝑏分别表示𝑎个共享专家和𝑏个路由专家。粗体字表示最佳或接近最佳的性能,最后一列除外。DeepSeekMoE 145B,甚至仅有一半激活专家参数的DeepSeekMoE 142B在性能上大大优于GShard 137B。此外,以28.5%的计算量,DeepSeekMoE 145B在性能上与DeepSeek 67B相媲美

论文贡献总结如下:

  • 架构创新。我提出了DeepSeekMoE,这是一种创新性的MoE架构,旨在实现终极的专家特化,它采用细粒度专家分割和共享专家隔离两种主要策略。

  • 经验证明进行了广泛的实验来经验证实DeepSeekMoE架构的有效性。实验结果验证了DeepSeekMoE 2B中的高水平专家特化,并表明DeepSeekMoE 2B几乎可以接近MoE模型的上限性能。

  • 可扩展性。将DeepSeekMoE扩大到训练一个160亿参数的模型,并展示仅使用约40%的计算量,DeepSeekMoE 16B就达到了DeepSeek 7B和LLaMA2 7B的可比性能。我们还进行了将DeepSeekMoE扩大到1450亿的参数的初步尝试,突出了其相对于GShard架构的持续优势,并展示了与DeepSeek 67B可比的性能。

  • MoE的对齐。成功地对DeepSeekMoE 16B进行了监督微调来创建对齐的聊天模型,展示了DeepSeekMoE 16B的适应性和通用性。

  • 公开发布。向公众发布了DeepSeekMoE 16B的模型checkpoint。值得注意的是,这个模型可以在不需要量化的情况下在具有40GB内存的单GPU上部署。

论文标题:DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models

论文链接:https://arxiv.org/pdf/2401.06066.pdf

相关文章:

DeepSeekMoE:迈向混合专家语言模型的终极专业化

一、结论写在前面 论文提出了MoE语言模型的DeepSeekMoE架构,目的是实现终极的专家专业化(expert specialization)。通过细粒度的专家分割和共享专家隔离,DeepSeekMoE相比主流的MoE架构实现了显著更高的专家专业化和性能。从较小的2B参数规模开始&#x…...

什么是Maxscript?为什么要学习Maxscript?

MAXScript是Autodesk 3ds Max的内置脚本语言,它是一种与3dsMax对话并使3dsMax执行某些操作的编程语言。它是一种脚本语言,这意味着您不需要编译代码即可运行。通过使用一系列基于文本的命令而不是使用UI操作,您可以完成许多使用UI操作无法完成的任务。 Maxscript是一种专有…...

HyperLogLog 近似累计去重技术解析:大数据场景下的高效基数统计

目录 引言 一、HyperLogLog 核心原理 1.1 算法思想 1.2 误差特性 二、SQL 实现详解(PostgreSQL 示例)...

LabVIEW透镜多参数自动检测系统

在现代制造业中,提升产品质量检测的自动化水平是提高生产效率和准确性的关键。本文介绍了一个基于LabVIEW的透镜多参数自动检测系统,该系统能够在单一工位上完成透镜的多项质量参数检测,并实现透镜的自动搬运与分选,极大地提升了检…...

MySQL数据库(二)- SQL

目录 ​编辑 一 DDL (一 数据库操作 1 查询-数据库(所有/当前) 2 创建-数据库 3 删除-数据库 4 使用-数据库 (二 表操作 1 创建-表结构 2 查询-所有表结构名称 3 查询-表结构内容 4 查询-建表语句 5 添加-字段名数据类型 6 修改-字段数据类…...

【Block总结】HiLo注意力,局部自注意力捕获细粒度的高频信息,通过全局注意力捕获低频信息|即插即用

一、论文信息 标题: Fast Vision Transformers with HiLo AttentionGitHub链接: https://github.com/ziplab/LITv2论文链接: arXiv 二、创新点 HiLo注意力机制: 本文提出了一种新的自注意力机制——HiLo注意力,旨在同时捕捉图像中的高频和低频特征。该机制通过将…...

python 使用Whisper模型进行语音翻译

目录 一、Whisper 是什么? 二、Whisper 的基本命令行用法 三、代码实践 四、是否保留Token标记 五、翻译长度问题 六、性能分析 一、Whisper 是什么? Whisper 是由 OpenAI 开源的一个自动语音识别(Automatic Speech Recognition, ASR)系统。它的主要特点是: 多语言…...

C# Winform enter键怎么去关联button

1.关联按钮上的Key事件按钮上的keypress,keydown,keyup事件随便一个即可private void textBox1_KeyDown(object sender, KeyEventArgs e){if (e.KeyCode Keys.Enter){this.textBox2.Focus();}}2.窗体上的事件private void textBox2_KeyPress(object sen…...

Github 2025-01-30 Go开源项目日报 Top10

根据Github Trendings的统计,今日(2025-01-30统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Go项目10Ollama: 本地大型语言模型设置与运行 创建周期:248 天开发语言:Go协议类型:MIT LicenseStar数量:42421 个Fork数量:2724 次关注人…...

电路研究9.2.6——合宙Air780EP中HTTP——HTTP GET 相关命令使用方法研究

这个也是一种协议类型: 14.16 使用方法举例 根据之前多种类似的协议的相关信息: HTTP/HTTPS:超文本传输协议(HTTP)用于Web数据的传输,而HTTPS是HTTP的安全版本,使用SSL/TLS进行加密。与FTP相比&…...

Java手写简单Merkle树

Java手写Merkle树代码 package com.blockchain.qgy.component;import com.blockchain.qgy.model.MerkleTreeNode; import com.blockchain.qgy.util.SHAUtil;import java.util.*;public class MerkleTree<T> {//merkle树private List<MerkleTreeNode<T>> lis…...

DeepSeek的使用技巧介绍

DeepSeek是一款由杭州深度求索人工智能技术有限公司开发的AI工具&#xff0c;结合了自然语言处理和深度学习技术&#xff0c;能够完成多种任务&#xff0c;如知识问答、数据分析、文案创作、代码开发等。以下将从使用技巧、核心功能及注意事项等方面详细介绍DeepSeek的使用方法…...

19 压测和常用的接口优化方案

高并发的平台应用&#xff0c;项目上线前离不开一个重要步骤就是压测&#xff0c;压测对于编码中的资源是否问题的排查&#xff0c;性能的调优都是离不开的。测试还要做测试报告&#xff0c;出具了测试报告给到运维团队才能上线。 压测的测试报告主要有以下几个方面:1.响应时间…...

AI应用部署——streamlit

如何把项目部署到一个具有公网ip地址的服务器上&#xff0c;让他人看到&#xff1f; 可以利用 streamlit 的社区云免费部署 1、生成requirements.txt文件 终端输入pip freeze > requirements.txt即可 requirements.txt里既包括自己安装过的库&#xff0c;也包括这些库的…...

NLP自然语言处理通识

目录 ELMO 一、ELMo的核心设计理念 1. 静态词向量的局限性 2. 动态上下文嵌入的核心思想 3. 层次化特征提取 二、ELMo的模型结构与技术逻辑 1. 双向语言模型&#xff08;BiLM&#xff09; 2. 多层LSTM的层次化表示 三、ELMo的运行过程 1. 预训练阶段 2. 下游任务微调 四、ELMo的…...

C++ 6

C构造函数有几种&#xff0c;分别什么作用 在C中&#xff0c;构造函数有几种不同的类型&#xff0c;每种都有其特定的作用&#xff1a; 默认构造函数&#xff1a;没有参数的构造函数&#xff0c;用于创建对象的默认实例。参数化构造函数&#xff1a;带参数的构造函数&#xf…...

使用QSqlQueryModel创建交替背景色的表格模型

class UserModel(QSqlQueryModel):def __init__(self):super().__init__()self._query "SELECT name, age FROM users"self.refresh()def refresh(self):self.setQuery(self._query)# 重新定义data()方法def data(self, index, role): if role Qt.BackgroundRole…...

jinfo命令详解

jinfo [option]option 有以下这些选项参数 -flag : 打印 指定名称的 jvm 参数值&#xff1b;-flag [|-] : 启动或禁用指定名称的 jvm参数&#xff1b;-flag : 设置指定名称的 jvm 参数值&#xff1b;-sysprops: 打印 java 系统属性-h | -help: 打印 jinfo 命令帮助信息 1&…...

如何在 ACP 中建模复合罐

概括 本篇博文介绍了 ANSYS Composite PrepPost (ACP) 缠绕向导。此工具允许仅使用几个条目自动定义高压罐中常见的悬垂复合结构。 ACP 绕线向导 将必要的信息输入到绕组向导中。重要的是要注意“参考半径”&#xff0c;它代表圆柱截面的半径&#xff0c;以及“轴向”&#x…...

【Java】微服务找不到问题记录can not find user-service

一、问题描述 运行网关微服务与用户微服务后&#xff0c;nacos服务成功注册 但是测试接口的时候网关没有找到相关服务 二、解决方案 我先检查了pom文件确定没问题后查看配置文件 最后发现是配置里spring.application.namexxx-user里面服务的名字后面多了一个空格 三、总结…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...