当前位置: 首页 > news >正文

DeepSeek-R1 论文解读 —— 强化学习大语言模型新时代来临?

近年来,人工智能(AI)领域发展迅猛,大语言模型(LLMs)为通用人工智能(AGI)的发展开辟了道路。OpenAI 的 o1 模型表现非凡,它引入的创新性推理时缩放技术显著提升了推理能力,不过该模型是闭源的。

DeepSeek-R1 paper title
今天,我们深入探讨由 DeepSeek 发布的突破性研究论文,该论文介绍了 DeepSeek-R1。这篇题为《DeepSeek-R1:通过强化学习激发大语言模型的推理能力》的论文,展示了一种前沿的开源推理模型,以及使用大规模强化学习技术训练此类模型的详细方法。

回顾:大语言模型训练过程

在这里插入图片描述

在深入探讨这篇论文之前,让我们简要回顾一下大语言模型的训练过程。通常,大语言模型要经过三个主要训练阶段:

  • 预训练:在这个阶段,大语言模型在大量文本和代码上进行预训练,以学习通用知识。这一步有助于模型熟练预测序列中的下一个标记。例如,给定 “write a bedtime _” 这样的输入,模型可以用 “story” 等合理的词补全。然而,预训练后,模型在遵循人类指令方面仍存在困难,下一阶段将解决这个问题。
  • 监督微调:在这个阶段,模型在指令数据集上进行微调。数据集中的每个样本都有一个指令 - 响应配对组成,其中响应作为标签。经过这个阶段,模型在遵循指令方面会表现得更好。
  • 强化学习:大语言模型利用反馈进一步优化。一种有效的方法是人类反馈强化学习(RLHF),即根据人类反馈训练模型。但收集大规模、高质量的人类反馈,尤其是针对复杂任务,颇具挑战。因此,另一种常用方法是人工智能反馈强化学习(RLAIF),由人工智能模型提供反馈。要使 RLAIF 有效工作,需要一个能力强大的模型来提供准确反馈。

引入 DeepSeek-R1-Zero 模型

Training DeepSeek-R1-Zero using only RL in post-training, without SFT

本文所探讨的研究省略或部分省略了监督微调阶段。具体来说,为了训练论文中提出的首个模型 DeepSeek-R1-Zero,我们从一个名为 DeepSeek-V3-Base 的预训练模型开始,它有 6710 亿个参数。监督微调阶段被完全省略。为了大规模进行强化学习,研究采用了一种基于规则的强化学习方法,而非标准的依靠人类或人工智能反馈的强化学习方式。

基于规则的强化学习

在这里插入图片描述

所使用的强化学习方法称为组相对策略优化(GRPO),由 DeepSeek 内部开发。

给定一个待训练的模型和一个输入问题,将输入送入模型,会采样得到一组输出。每个输出都包含推理过程和答案。GRPO 方法观察这些采样输出,并通过使用预定义规则为每个输出计算奖励,来训练模型生成更优的选项:

  • 准确性:一组规则用于计算准确性奖励。例如,对于有确定答案的数学问题,我们可以确切检查模型给出的最终答案是否正确。对于有预定义测试用例的代码问题,编译器会根据测试用例生成反馈。
  • 格式:另一类规则用于创建格式奖励。在论文中的下图里,我们可以看到模型被要求如何响应,其推理过程在标签内,答案在标签内。格式奖励确保模型遵循这种格式。

在这里插入图片描述

这种基于规则的机制不使用神经模型生成奖励,简化并降低了训练过程的成本,使其大规模应用成为可能。此外,研究人员发现奖励模型可能会受到奖励作弊问题的影响,即模型找到一种漏洞或意外方式来最大化奖励,但这与预期目标并不相符。

DeepSeek-R1-Zero 性能洞察

现在,让我们来探究一下 DeepSeek-R1-Zero 模型的一些性能表现。
在这里插入图片描述
在论文中的上表里,我们看到了 DeepSeek-R1-Zero 与 OpenAI 的 o1 在推理相关基准测试中的比较。令人印象深刻的是,DeepSeek-R1-Zero 与 o1 相当,在某些情况下甚至超越了它。论文中下面这张有趣的图展示了在 AIME 数据集上训练期间的改进过程。值得注意的是,AIME 上的平均一次通过率大幅提升,从最初的 15.6% 跃升至令人惊叹的 71.0%,达到了与 OpenAI 的 o1 相当的水平!
在这里插入图片描述

DeepSeek-R1-Zero 的自我进化过程

在这里插入图片描述
论文的一个关键发现是模型的自我进化过程,如上图所示。x 轴表示训练步数,y 轴表明随着训练的进行,模型的响应长度增加。通过强化学习,模型在解决推理任务时自然学会分配更多思考时间。令人惊奇的是,这一过程无需任何外部调整。

“顿悟时刻” 现象—— Aha Moment

如果上述内容还不够令人称奇,论文中还提到了 DeepSeek-R1-Zero 的另一个有趣现象 ——“顿悟时刻”。论文中的以下示例展示了这一现象。给定一道数学题,模型开始推理过程。然而,在某个时刻,模型开始重新评估其解决方案。模型学会重新评估其初始方法,并在必要时进行自我纠正。这种非凡的能力在强化学习训练过程中自然显现。
在这里插入图片描述

DeepSeek-R1 模型的训练过程

现在,我们来讨论第二个模型 DeepSeek-R1 的训练过程。但首先,既然我们刚刚看到了 DeepSeek-R1-Zero 卓越的能力,为什么还需要第二个模型呢?

为什么需要 DeepSeek-R1?

主要有两个原因:
在这里插入图片描述

  • 可读性问题:DeepSeek-R1-Zero 的输出往往可读性较差。
  • 语言一致性问题:它经常在单个回答中混合多种语言。

上述问题使得 DeepSeek-R1-Zero 的用户体验欠佳。有趣的是,一项消融研究表明,引导模型使用单一语言会略微损害其性能。与通常使用单一语言的人类不同,该模型通过使用多种语言能更好地表达自己,这一点令人着迷。

DeepSeek-R1 的训练流程

为了解决这些问题,DeepSeek-R1 采用四阶段流程进行训练:

  • 冷启动(阶段 1):从预训练模型 DeepSeek-V3-Base 开始,模型在从 DeepSeek-R1-Zero 收集的少量结果数据集上进行监督微调。这些结果经过验证,质量高且可读性强。这个数据集包含数千个样本,规模相对较小。在这个小规模高质量数据集上进行监督微调,有助于 DeepSeek-R1 缓解初始模型中存在的可读性问题。
  • 推理强化学习(阶段 2):这个阶段应用与前一个模型相同的大规模强化学习方法,以提升模型的推理能力。具体来说,在编程、数学、科学和逻辑推理等任务中,这些任务有明确的解决方案,可为强化学习过程定义奖励规则。
  • 拒绝采样和监督微调(阶段 3):在这个阶段,使用阶段 2 的模型检查点生成大量样本。通过拒绝采样,只保留正确且可读的样本。此外,使用生成式奖励模型 DeepSeek-V3 来决定保留哪些样本。这个阶段还包含了部分 DeepSeek-V3 的训练数据。然后,模型在这个数据集上进行监督微调。这个数据集不仅包含推理相关的问题,还提升了模型在更多领域的能力。
  • 多样化强化学习阶段(阶段 4):这是最后一个阶段,包含多样化的任务。对于像数学这样适用的任务,使用基于规则的奖励。对于其他任务,由大语言模型提供反馈,使模型符合人类偏好。

此外,利用阶段 3 构建的数据集对各种较小的开源模型进行了提炼,提供了具有高推理能力的较小规模替代模型。

DeepSeek-R1 的显著成果

在这里插入图片描述

在本文结尾,我们着重介绍一下免费可用的 DeepSeek-R1 与 OpenAI 的 o1 模型相比取得的显著成果。论文中的上图显示,DeepSeek-R1 不仅与 o1 相当,在某些基准测试中还超越了它。

此外,经过提炼的 320 亿参数模型也展现出了令人瞩目的性能,使其成为具有高推理能力的可行较小规模替代模型。

参考文献和链接

  • 论文页面: [2501.12948] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
  • GitHub 页面:GitHub - deepseek-ai/DeepSeek-R1

相关文章:

DeepSeek-R1 论文解读 —— 强化学习大语言模型新时代来临?

近年来,人工智能(AI)领域发展迅猛,大语言模型(LLMs)为通用人工智能(AGI)的发展开辟了道路。OpenAI 的 o1 模型表现非凡,它引入的创新性推理时缩放技术显著提升了推理能力…...

高阶C语言|深入理解字符串函数和内存函数

文章目录 前言1.求字符串长度1.1 字符串长度函数:strlen模拟实现 2.长度不受限制的字符串函数2.1 字符串拷贝函数:strcpy模拟实现 2.2 字符串连接函数:strcat模拟实现 2.3 字符串比较函数:strcmp模拟实现 3.长度受限制的字符串函数…...

UE学习日志#17 C++笔记#3 基础复习3

19.2 [[maybe_unused]] 禁止编译器在未使用某些内容时发出警告 19.3 [[noreturn]] 永远不会把控制权返回给调用点 19.4 [[deprecated]] 标记为已弃用,仍然可以使用但是不鼓励使用 可以加参数表示弃用的原因[[deprecated("")]] 19.5 [[likely]]和[[un…...

团体程序设计天梯赛-练习集——L1-028 判断素数

前言 一道10分的题目,相对来说比较简单,思考的时候要仔细且活跃,有时候在写代码的时候一些代码的出现很多余,并且会影响最后的结果 L1-028 判断素数 本题的目标很简单,就是判断一个给定的正整数是否素数。 输入格式…...

从0开始使用面对对象C语言搭建一个基于OLED的图形显示框架(基础图形库实现)

目录 基础图形库的抽象 抽象图形 抽象点 设计我们的抽象 实现我们的抽象 测试 抽象线 设计我们的抽象 实现我们的抽象 绘制垂直的和水平的线 使用Bresenham算法完成任意斜率的绘制 绘制三角形和矩形 矩形 三角形 实现 绘制圆,圆弧和椭圆 继续我们的…...

创新创业计划书|建筑垃圾资源化回收

目录 第1部分 公司概况........................................................................ 1 第2部分 产品/服务...................................................................... 3 第3部分 研究与开发.................................................…...

反射、枚举以及lambda表达式

一.反射 1.概念:Java的反射(reflection)机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意方法和属性,既然能拿到那么&am…...

ROS应用之IMU碰撞检测与接触事件识别

前言 碰撞检测与接触事件识别是机器人与环境交互中的重要任务,尤其是在复杂的动态环境中。IMU(惯性测量单元)作为一种高频率、低延迟的传感器,因其能够检测加速度、角速度等动态变化而成为实现碰撞检测的核心手段之一。结合先进的…...

docker安装MySQL8:docker离线安装MySQL、docker在线安装MySQL、MySQL镜像下载、MySQL配置、MySQL命令

一、镜像下载 1、在线下载 在一台能连外网的linux上执行docker镜像拉取命令 docker pull mysql:8.0.41 2、离线包下载 两种方式: 方式一: -)在一台能连外网的linux上安装docker执行第一步的命令下载镜像 -)导出 # 导出镜…...

android安卓用Rime

之前 [1] 在 iOS 配置用上自改方案 [2],现想在安卓也用上。Rime 主页推荐了两个安卓平台支持 rime 的输入法 [3]: 同文 Tongwen Rime Input Method Editor,但在我的 Realme X2 Pro 上似乎有 bug:弹出的虚拟键盘只有几个 switcher…...

每日一博 - 三高系统架构设计:高性能、高并发、高可用性解析

文章目录 引言一、高性能篇1.1 高性能的核心意义 1.2 影响系统性能的因素1.3 高性能优化方法论1.3.1 读优化:缓存与数据库的结合1.3.2 写优化:异步化处理 1.4 高性能优化实践1.4.1 本地缓存 vs 分布式缓存1.4.2 数据库优化 二、高并发篇2.1 高并发的核心…...

C++ 中的引用(Reference)

在 C 中,引用(Reference)是一种特殊的变量类型,它提供了一个已存在变量的别名。引用在很多场景下都非常有用,比如函数参数传递、返回值等。下面将详细介绍 C 引用的相关知识。 1. 引用的基本概念和语法 引用是已存在…...

负荷预测算法模型

1. 时间序列分析方法 时间序列分析方法是最早被用来进行电力负荷预测的方法之一,它基于历史数据来构建数学模型,以描述时间与负荷值之间的关系。这种方法通常只考虑时间变量,不需要大量的输入数据,因此计算速度快。然而&#xff…...

【C语言】内存管理

【C语言】内存管理 文章目录 【C语言】内存管理1.概念2.库函数3.动态分配内存malloccalloc 4.重新调整内存的大小和释放内存reallocfree 1.概念 C 语言为内存的分配和管理提供了几个函数。这些函数可以在 <stdlib.h> 头文件中找到。 在 C 语言中&#xff0c;内存是通过…...

deepseek大模型本机部署

2024年1月20日晚&#xff0c;中国DeepSeek发布了最新推理模型DeepSeek-R1&#xff0c;引发广泛关注。这款模型不仅在性能上与OpenAI的GPT-4相媲美&#xff0c;更以开源和创新训练方法&#xff0c;为AI发展带来了新的可能性。 本文讲解如何在本地部署deepseek r1模型。deepseek官…...

动态规划DP 最长上升子序列模型 拦截导弹(题目分析+C++完整代码)

概览检索 动态规划DP 最长上升子序列模型 拦截导弹 原题链接 AcWiing 1010. 拦截导弹 题目描述 某国为了防御敌国的导弹袭击&#xff0c;发展出一种导弹拦截系统。 但是这种导弹拦截系统有一个缺陷&#xff1a;虽然它的第一发炮弹能够到达任意的高度&#xff0c;但是以后每…...

缩位求和——蓝桥杯

1.题目描述 在电子计算机普及以前&#xff0c;人们经常用一个粗略的方法来验算四则运算是否正确。 比如&#xff1a;248153720248153720 把乘数和被乘数分别逐位求和&#xff0c;如果是多位数再逐位求和&#xff0c;直到是 1 位数&#xff0c;得 24814>145 156 56 而…...

Baklib赋能企业实现高效数字化内容管理提升竞争力

内容概要 在数字经济的浪潮下&#xff0c;企业面临着前所未有的机遇与挑战。随着信息技术的迅猛发展&#xff0c;各行业都在加速推进数字化转型&#xff0c;以保持竞争力。在这个过程中&#xff0c;数字化内容管理成为不可或缺的一环。高效的内容管理不仅能够优化内部流程&…...

【视频+图文讲解】HTML基础2-html骨架与基本语法

图文教程 基本骨架 举个例子&#xff0c;下图所展示的为html的源代码 -!DOCTYPE&#xff1a;表示文档类型&#xff08;后边写的html表示文档类型是html&#xff09;&#xff1b;其中“&#xff01;”表示声明 只要是加这个声明标签的&#xff0c;浏览器就会把下边的源代码当…...

消息队列篇--原理篇--常见消息队列总结(RabbitMQ,Kafka,ActiveMQ,RocketMQ,Pulsar)

1、RabbitMQ 特点&#xff1a; AMQP协议&#xff1a;RabbitMQ是基于AMQP&#xff08;高级消息队列协议&#xff09;构建的&#xff0c;支持多种消息传递模式&#xff0c;如发布/订阅、路由、RPC等。多语言支持&#xff1a;支持多种编程语言的客户端库&#xff0c;包括Java、P…...

【力扣每日一题】存在重复元素 II 解题思路

219. 存在重复元素 II 解题思路 问题描述 给定一个整数数组 nums 和一个整数 k&#xff0c;要求判断数组中是否存在两个 不同的索引 i 和 j&#xff0c;使得&#xff1a; nums[i] nums[j]且满足 abs(i - j) < k 如果满足上述条件&#xff0c;返回 true&#xff0c;否则…...

React第二十八章(css modules)

css modules 什么是 css modules 因为 React 没有Vue的Scoped&#xff0c;但是React又是SPA(单页面应用)&#xff0c;所以需要一种方式来解决css的样式冲突问题&#xff0c;也就是把每个组件的样式做成单独的作用域&#xff0c;实现样式隔离&#xff0c;而css modules就是一种…...

本地运行大模型效果及配置展示

电脑上用ollama安装了qwen2.5:32b&#xff0c;deepseek-r1:32b&#xff0c;deepseek-r1:14b&#xff0c;llama3.1:8b四个模型&#xff0c;都是Q4_K_M量化版。 运行过程中主要是cpu和内存负载比较大&#xff0c;qwen2.5:32b大概需要22g&#xff0c;deepseek-r1&#xff1a;32b类…...

愿景:做机器视觉行业的颠覆者

一个愿景&#xff0c;两场战斗&#xff0c;专注制胜。 一个愿景&#xff1a;做机器视觉行业的颠覆者。 我给自己创业&#xff0c;立一个大的愿景&#xff1a;做机器视觉行业的颠覆者。 两场战斗&#xff1a;无监督-大模型 上半场&#xff0c;无监督。2025-2030&#xff0c;共五…...

arm-linux-gnueabihf安装

Linaro Releases windows下打开wsl2中的ubuntu&#xff0c;资源管理器中输入&#xff1a; \\wsl$gcc-linaro-4.9.4-2017.01-x86_64_arm-linux-gnueabihf.tar.xz 复制到/home/ark01/tool 在 Ubuntu 中创建目录&#xff1a; /usr/local/arm&#xff0c;命令如下&#xff1a; …...

力扣动态规划-16【算法学习day.110】

前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向&#xff08;例如想要掌握基础用法&#xff0c;该刷哪些题&#xff1f;建议灵神的题单和代码随想录&#xff09;和记录自己的学习过程&#xff0c;我的解析也不会做的非常详细&#xff0c;只会提供思路和一些关…...

Java基础知识总结(三十四)--java.util.Date

月份从0-11&#xff1b; /* 日期对象和毫秒值之间的转换。 1&#xff0c;日期对象转成毫秒值。Date类中的getTime方法。 2&#xff0c;如何将获取到的毫秒值转成具体的日期呢&#xff1f; Date类中的setTime方法。也可以通过构造方法。 */ //日期对象转成毫秒值 Date …...

零售EDI:Costco EDI 项目须知

Costco 是全球领先的会员制仓储式零售商&#xff0c;致力于为会员提供高品质且价格实惠的商品。其经营范围涵盖食品、电子产品、家居用品、服装和办公设备等多个领域。 Costco 的 EDI 对接需求分析 为了更高效地管理其复杂的全球供应链&#xff0c;Costco 采用了先进的 EDI&am…...

最近最少使用算法(LRU最近最少使用)缓存替换算法

含义 最近最少使用算法&#xff08;LRU&#xff09;是一种缓存替换算法&#xff0c;用于在缓存空间有限的情况下&#xff0c;选择最少使用的数据项进行替换。该算法的核心思想是基于时间局部性原理&#xff0c;即刚被访问的数据在未来也很有可能被再次访问。 实现 LRU算法的…...

sublime_text的快捷键

sublime_text的快捷键 向下复制, 复制光标所在整行并插入到下一行&#xff1a;通过 CtrlShiftD 实现快速复制当前行的功能。 可选多行, 不选则复制当前行 ctrl Shift D 删除当前行&#xff1a;通过 CtrlShiftK 实现快速删除当前行的功能。 可选多行, 不选则删当前行 ctrl S…...