【学习笔记】深度学习网络-正则化方法
作者选择了由 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 三位大佬撰写的《Deep Learning》(人工智能领域的经典教程,深度学习领域研究生必读教材),开始深度学习领域学习,深入全面的理解深度学习的理论知识。
在之前的文章中介绍了深度学习中用到的数学基础和强化学习的概念,本文将开始介绍现代深度学习中用于解决实际应用的实践。
【一文读懂】深度学习技术谱系:探索生成式AI的核心模型(一) 基础技术图谱
【生成式AI】理解深度学习和机器学习的数学基础:线性代数
【万字长文】理解深度学习和机器学习的数学基础:概率论和信息论
【学习笔记】理解深度学习和机器学习的数学基础:数值计算
【学习笔记】理解深度学习和机器学习的关系
【学习笔记】深度学习网络-深度前馈网络(MLP)
深度学习中的正则化方法:防止过拟合与提高泛化能力
一、引言
深度学习作为人工智能领域的重要分支,近年来取得了显著的发展。然而,随着模型复杂度的增加,过拟合问题也愈发突出。过拟合是指模型在训练数据上表现良好,但在未见数据上表现不佳的现象。正则化技术是解决这一问题的关键手段,通过限制模型复杂度,提高模型的泛化能力,从而在未知数据上表现出更好的性能。
二、正则化的概念与作用
正则化是深度学习中用于防止模型过拟合的重要技术。它通过向模型的损失函数添加额外的约束或惩罚项,使得学习过程更加稳定并提高模型的泛化能力。正则化的主要目的是通过控制模型复杂度,使模型能够更好地处理未知数据。
三、常见的正则化方法
1. L1和L2正则化
-
L1正则化:通过在损失函数中加入权重的绝对值和来约束模型复杂度。其目标函数为:
其中,
是正则化强度,
是第 j 个特征的权重。L1正则化能够将部分不重要的特征权重缩减为0,从而实现特征选择。
-
L2正则化:通过在损失函数中添加所有模型参数的平方和,来惩罚过大的权重。常见的形式是:
其中
是原始损失函数,
是模型的权重,
是正则化强度的超参数。L2正则化倾向于将权重值压缩得比较小,减少模型的复杂度,从而提高泛化能力。
2. Dropout
Dropout是一种在训练过程中随机丢弃神经元的正则化方法,防止模型对特定神经元的过度依赖。具体来说,每次训练时,随机选择一部分神经元(通常是50%),将其输出设为0,从而迫使网络学习更加鲁棒的特征表示。Dropout通过减少神经元之间的共适应性,提高模型的泛化能力。
3. 数据增强
数据增强通过生成新的训练样本,增加训练数据的多样性,从而提高模型的泛化能力。常见的数据增强方法包括图像的旋转、平移、缩放、翻转等。数据增强特别适用于图像识别任务,可以显著提高模型的鲁棒性。
4. 早停
早停是一种通过监控验证集误差来防止过拟合的方法。具体来说,在训练过程中,当验证集误差开始上升时,停止训练。这样可以避免模型在训练数据上过度拟合,从而提高泛化能力。
5. Batch Normalization
Batch Normalization通过标准化每层的输入,减少内部协变量偏移,从而提高模型的训练速度和泛化能力。Batch Normalization在深度神经网络中广泛应用,可以显著提高模型的性能。
6. 权重衰减
权重衰减与L2正则化相似,通过在优化过程中引入权重的平方惩罚项来限制权重的大小,从而减少模型的复杂度。权重衰减能有效防止网络过拟合,尤其是在训练数据有限时。
7. 梯度惩罚
梯度惩罚是对神经网络的梯度大小进行正则化的技术,目的是约束网络的梯度不至于过大,避免过拟合。通过对梯度的惩罚,梯度惩罚能促使模型学习到更加平滑的决策边界,从而提高模型的泛化能力。
8. 特征选择和降维
特征选择通过选择对预测有用的特征来减少模型的输入维度,从而降低模型复杂度。降维技术如PCA也可以用于减少数据的维度,提高模型的可解释性和计算效率。
四、正则化方法的选择与应用
不同的正则化方法适用于不同的应用场景,具体选择哪种方法通常依赖于问题的类型、数据集的大小、模型的结构等因素。通过合理应用正则化方法,可以有效避免模型过拟合,提高其在未知数据上的表现。
-
L1和L2正则化:适用于线性模型和神经网络,特别是在回归问题中。
-
Dropout:适用于深度神经网络,特别是在图像识别和自然语言处理任务中。
-
数据增强:适用于图像识别任务,可以显著提高模型的鲁棒性。
-
早停:适用于各种深度学习任务,特别是在训练数据有限时。
-
Batch Normalization:适用于深度神经网络,可以显著提高训练速度和泛化能力。
-
权重衰减:适用于各种深度学习任务,特别是在训练数据有限时。
-
梯度惩罚:适用于对抗训练、生成对抗网络(GAN)和强化学习中。
-
特征选择和降维:适用于高维数据集的处理,可以提高模型的可解释性和计算效率。
五、正则化方法的未来展望
随着深度学习技术的不断发展,新型正则化方法的研究将会越来越深入。未来,研究者将致力于探索更加高效、可解释的正则化方法。同时,神经网络正则化技术与其他学科的研究相结合,如生物学、物理学等,将有助于发现新的正则化方法,并提高深度学习模型的应用范围。
六、总结
正则化技术在深度学习中扮演着至关重要的角色,通过防止过拟合,提升模型的泛化能力。本文介绍了多种常见的正则化方法,包括L1和L2正则化、Dropout、数据增强、早停、Batch Normalization、权重衰减、梯度惩罚和特征选择等。这些方法通过不同的机制来限制模型的复杂度,从而提高模型在未知数据上的表现。在实际应用中,可以根据具体问题和数据集的特点选择合适的正则化技术和参数设置。
通过对正则化方法的深入理解和合理应用,可以显著提高深度学习模型的性能和泛化能力,为深度学习的发展提供新的动力。
相关文章:
【学习笔记】深度学习网络-正则化方法
作者选择了由 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 三位大佬撰写的《Deep Learning》(人工智能领域的经典教程,深度学习领域研究生必读教材),开始深度学习领域学习,深入全面的理解深度学习的理论知识。 在之前的文章中介绍了深度学习中用…...
网站快速收录:如何优化网站头部与底部信息?
本文转自:百万收录网 原文链接:https://www.baiwanshoulu.com/46.html 为了加快网站的收录速度,优化网站头部与底部信息是关键一环。以下是一些具体的优化建议: 网站头部信息优化 标题标签(TitleTag)优化…...
网络测试工具
工具介绍: 这是一个功能完整的网络测速工具,可以测试网络的下载速度、上传速度和延迟。 功能特点: 1. 速度测试 - 下载速度测试 - 上传速度测试 - Ping延迟测试 - 自动选择最佳服务器 2. 实时显示 - 进度条显示测试进度 - 实时显示测试状…...
使用HttpClient和HttpRequest发送HTTP请求
项目中经常会用到向第三方系统发送请求来传递数据或者获得信息,一般用的比较多的为HttpClient 和 HttpRequest,这里简要总结一下 HttpClient 和 HttpRequest 的用法 一、HttpClient 1. 发送get请求 public static String get(String url, Map<Stri…...
软件工程概论试题五
一、多选 1.好的软件的基本属性包括()。 A. 效率 B. 可依赖性和信息安全性 C. 可维护性 D.可接受性 正答:ABCD 2.软件工程的三要素是什么()? A. 结构化 B. 工具 C.面向对象 D.数据流! E.方法 F.过程 正答:BEF 3.下面中英文术语对照哪些是正确的、且是属…...
填充每个节点的下一个右侧节点指针力扣--116,117
目录 题目 思路 代码 题目 116 给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下: struct Node { int val; Node *left; Node *right; Node *next; } 填充它的每个 next 指针,…...
DBUtils中QueryRunner(空参,传数据源)构造方法的区别及应用场景
关于学习Spring框架时重构DAO层时,遇到的QueryRunner构造方法的问题,回忆MySQL中DBUtils部分 1. 空参构造方法 new QueryRunner() 特点: 不绑定数据源:QueryRunner 实例内部没有 DataSource,因此无法自动获取连接。 …...
STM32 TIM输入捕获 测量频率
输入捕获简介: IC(Input Capture)输入捕获 输入捕获模式下,当通道输入引脚出现指定电平跳变时,当前CNT的值将被锁存到CCR中,可用于测量PWM波形的频率、占空比、脉冲间隔、电平持续时间等参数 每个高级定时器…...
Autosar-以太网是怎么运行的?(Davinci配置部分)
写在前面: 入行一段时间了,基于个人理解整理一些东西,如有错误,欢迎各位大佬评论区指正!!! 目录 1.Autosar ETH通讯软件架构 2.Ethernet MCAL配置 2.1配置对应Pin属性 2.2配置TXD引脚 2.3配…...
16.[前端开发]Day16-HTML+CSS阶段练习(网易云音乐五)
完整代码 网易云-main-left-rank(排行榜) <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name&q…...
langchain 实现多智能体多轮对话
这里写目录标题 工具定义模型选择graph节点函数定义graph 运行 工具定义 import random from typing import Annotated, Literalfrom langchain_core.tools import tool from langchain_core.tools.base import InjectedToolCallId from langgraph.prebuilt import InjectedSt…...
Java-数据结构-优先级队列(堆)
一、优先级队列 ① 什么是优先级队列? 在此之前,我们已经学习过了"队列"的相关知识,我们知道"队列"是一种"先进先出"的数据结构,我们还学习过"栈",是"后进先出"的…...
C++实现状态模式
首先上代码: #include <iostream> #include <memory>class Context;class State { public:virtual void Handle(Context * context) 0; //纯虚函数virtual ~State() default; //虚析构函数 };//创建状态A class ConcreateStateA : public State{…...
FreeRTOS学习笔记2:FreeRTOS的基础知识
1.FreeRTOS介绍 FreeRTOS是一个免费的嵌入式实时操作系统,同时它在市面上也是一款主流的操作系统,是工作上必不可少的技能。它具有以下六种特点: 1.免费开源:在商业产品中使用,无潜在商业风险,无需担心。 2…...
计算机网络之计算机网络的分类
计算机网络可以根据不同的角度进行分类,以下是几种常见的分类方式: 1. 按照规模和范围: 局域网(LAN,Local Area Network):覆盖较小范围(例如一个建筑物或校园)…...
从理论到实践:Linux 进程替换与 exec 系列函数
个人主页:chian-ocean 文章专栏-Linux 前言: 在Linux中,进程替换(Process Substitution)是一个非常强大的特性,它允许将一个进程的输出直接当作一个文件来处理。这种技术通常用于Shell脚本和命令行操作中…...
Flutter常用Widget小部件
小部件Widget是一个类,按照继承方式,分为无状态的StatelessWidget和有状态的StatefulWidget。 这里先创建一个简单的无状态的Text小部件。 Text文本Widget 文件:lib/app/app.dart。 import package:flutter/material.dart;class App exte…...
微信小程序实战0 设置
1.调节模拟器到右侧位置 2.设置编辑页面的字体和行距。...
2025开源DouyinLiveRecorder全平台直播间录制工具整合包,多直播同时录制、教学直播录制、教学视频推送、简单易用不占内存
一、DouyinLiveRecorder软件介绍(文末提供下载) 官方地址:GitHub - ihmily/DouyinLiveRecorder 本文信息来源于作者GitHub地址 一款简易的可循环值守的直播录制工具,基于FFmpeg实现多平台直播源录制,支持自定义配置录制…...
使用 postman 测试思源笔记接口
思源笔记 API 权鉴 官方文档-中文:https://github.com/siyuan-note/siyuan/blob/master/API_zh_CN.md 权鉴相关介绍截图: 对应的xxx,在软件中查看 如上图:在每次发送 API 请求时,需要在 Header 中添加 以下键值对&a…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
