python学opencv|读取图像(五十三)原理探索:使用cv.matchTemplate()函数实现最佳图像匹配
【1】引言
前序学习进程中,已经探索了使用cv.matchTemplate()函数实现最佳图像匹配的技巧,并且成功对两个目标进行了匹配。
相关文章链接为:python学opencv|读取图像(五十二)使用cv.matchTemplate()函数实现最佳图像匹配-CSDN博客
实际上,我们在这篇文章中重点体会了匹配效果,却没有真正剖析代码背后的运行逻辑。今天这篇文章的目标就是对代码背后逻辑稍微追溯一下。
【2】官网教程
【2.1】cv2.matchTemplate()函数
点击下方链接,直达cv2.matchTemplate()函数官网链接:
图1 cv2.matchTemplate()函数官网说明
图1所示的cv2.matchTemplate()函数官网说明中,有三处做了标记,它们彼此交织在一起。需要解读:
a.待匹配的大图像I大小为W X H,使用的模板T像素大小为w x h,获得的匹配效果R对应的的矩阵大小为(W-w+1,H-h+1);
b.使用不同的匹配方法后,再用minMaxLoc函数读取最佳匹配效果对应的左上角坐标时,有时候取最小值,如TM_SQDIFF,有时候取最大值,如TM_CCORR和TM_CCOEFF。
c.解读匹配方法请看第2.2节。
【2.2】cv2.matchTemplate()函数
点击链接,直达函数对匹配方法的解读:OpenCV: Object Detection
在这个页面,会看到不同的函数说明:
图2 匹配方法的数学公式
由图2可见,TM_SQDIFF采用的是减法计算,而TM_CCORR和TM_CCOEFF采用的乘法计算,所以相似度高的时候,TM_SQDIFF方法的计算值往往会接近0,而TM_CCORR和TM_CCOEFF方法就会在因为平方而取得更大的值。
所以“用minMaxLoc函数读取最佳匹配效果对应的左上角坐标时,有时候取最小值,如TM_SQDIFF,有时候取最大值,如TM_CCORR和TM_CCOEFF”就获得了解释。
【3】代码测试
【3.1】代码回顾
首先直接引用前一篇文章的完整代码:
import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片
srcm = cv.imread('srcm.png') #读取图像srcx.png
srcg = cv.imread('srcg.png') #读取图像srcp.png
srcc = cv.imread('srcc.png') #读取图像srcp.png
rows,cols,cans=srcg.shape #读取图像属性
rowsc,colsc,cansc=srcc.shape #读取图像属性#匹配结果
results=cv.matchTemplate(srcm,srcg,cv.TM_CCORR_NORMED)
results1=cv.matchTemplate(srcm,srcc,cv.TM_CCORR_NORMED)#取值
minValue,maxValue,minLoc,maxLoc=cv.minMaxLoc(results)
minValuec,maxValuec,minLocc,maxLocc=cv.minMaxLoc(results1)#取最大坐标
resultPoint1=maxLoc
print("resultPoint1=",resultPoint1)#取最大坐标
resultPoint2=maxLocc
print("resultPoint2=",resultPoint2)#定义新坐标
resultPoint3=(resultPoint1[0]+cols,resultPoint1[1]+rows)
print("resultPoint3=",resultPoint3)#定义新坐标
resultPoint4=(resultPoint2[0]+colsc,resultPoint2[1]+rowsc)
print("resultPoint4=",resultPoint4)#作标记
cv.circle(srcm,(250,250),30,(0,255,0))
cv.rectangle(srcm,resultPoint1,resultPoint3,(0,255,0),2)
cv.rectangle(srcm,resultPoint2,resultPoint4,(200,180,55),2)# 显示结果
cv.imshow('srcm ', srcm)
cv.imshow('srcg ', srcg)
cv.imshow('srcc ', srcc)
cv.imwrite('srcgc.png',srcm)#窗口控制
cv.waitKey() # 图像不关闭
cv.destroyAllWindows() # 释放所有窗口
待匹配的图像I为:
图3 待匹配图像I:srcm.png
图4 模板T1 srcg.png
图5 模板T2 srcc.png
图6 匹配效果 srcgc.png
上述代码全部使用了cv2.TM_CCORR_NORMED方法,所以需要调用最大值来代表最佳匹配效果的左上角坐标。
未验证不用方法对应最佳匹配效果的左上角坐标,现在应增加匹配方法。
【3.2】代码扩展
在直接引用前一篇文章的完整代码的基础上,不仅要增加匹配方法,还要显示出匹配结果。
#匹配计算
results=cv.matchTemplate(srcm,srcg,cv.TM_SQDIFF_NORMED) #TM_SQDIFF匹配方法
results1=cv.matchTemplate(srcm,srcc,cv.TM_CCORR_NORMED) #TM_CCORR匹配方法
print("result=",results) #输出匹配结果
print("result1=",results1) #输出匹配结果
代码先后使用了TM_SQDIFF和TM_CCORR两种方法,并且要求输出了匹配结果。
然后读取了调用minMaxLoc()函数对结果渠道的各个参数值:
#取值
minValue,maxValue,minLoc,maxLoc=cv.minMaxLoc(results)
minValuec,maxValuec,minLocc,maxLocc=cv.minMaxLoc(results1)
print("result.minValue=",minValue)
print("result1.minValuec=",minValuec)
print("result.maxValue=",maxValue)
print("result1.maxValuec=",maxValuec)
print("result.minLoc=",minLoc)
print("result1.minLocc=",minLocc)
print("result.maxLoc=",maxLoc)
print("result1.maxLocc=",maxLocc)
然后根据先前的分析思路,取最佳匹配矩阵的左上角坐标。
这时候TM_SQDIFF取最小值,TM_CCORR方法取最大值,之后还要叠加模板的大小,来画出整个匹配区域:
#取最小坐标
resultPoint1=minLoc
print("resultPoint1=",resultPoint1)#取最大坐标
resultPoint2=maxLocc
print("resultPoint2=",resultPoint2)#定义新坐标
resultPoint3=(resultPoint1[0]+cols,resultPoint1[1]+rows)
print("resultPoint3=",resultPoint3)#定义新坐标
resultPoint4=(resultPoint2[0]+colsc,resultPoint2[1]+rowsc)
print("resultPoint4=",resultPoint4)
之后为了突出匹配点,以最小和最大坐标Wie圆心,分别绘制半径为10和20的圆形:
#作标记
cv.circle(srcm,(minLoc),10,(255,255,0))
cv.circle(srcm,(maxLoc),20,(255,255,0))
cv.circle(srcm,(minLocc),10,(0,255,255))
cv.circle(srcm,(maxLocc),20,(0,255,255))
cv.circle(srcm,(250,250),30,(0,255,0))
cv.rectangle(srcm,resultPoint1,resultPoint3,(0,255,0),2)
cv.rectangle(srcm,resultPoint2,resultPoint4,(200,180,55),2)
然后输出所有图像:
# 显示结果
cv.imshow('srcm ', srcm)
cv.imwrite('srcgcw.png',srcm)
#窗口控制
cv.waitKey() # 图像不关闭
cv.destroyAllWindows() # 释放所有窗口
代码运行后,获得的匹配效果为:
图7 匹配效果srcgcw.png
由图7可见,TM_SQDIFF取最小值,TM_CCORR方法取最大值获得的最佳匹配图像实现了预期效果。
【4】细节说明
上述3.2节读取到的部分匹配结果矩阵为:
图8 匹配结果矩阵
由图8可见,每个矩阵内部给出了很多值,这表明在矩阵内部,图像和模板是按照像素点逐个进行比对匹配。
【5】总结
掌握了python+opencv调用使用cv.matchTemplate()函数实现最佳图像匹配的执行原理和过程。
相关文章:

python学opencv|读取图像(五十三)原理探索:使用cv.matchTemplate()函数实现最佳图像匹配
【1】引言 前序学习进程中,已经探索了使用cv.matchTemplate()函数实现最佳图像匹配的技巧,并且成功对两个目标进行了匹配。 相关文章链接为:python学opencv|读取图像(五十二)使用cv.matchTemplate()函数实现最佳图像…...

win10部署本地deepseek-r1,chatbox,deepseek联网(谷歌网页插件Page Assist)
win10部署本地deepseek-r1,chatbox,deepseek联网(谷歌网页插件Page Assist) 前言一、本地部署DeepSeek-r1step1 安装ollamastep2 下载deepseek-r1step2.1 找到模型deepseek-r1step2.2 cmd里粘贴 后按回车,进行下载 ste…...

冯·诺依曼体系结构
目录 冯诺依曼体系结构推导 内存提高冯诺依曼体系结构效率的方法 你使用QQ和朋友聊天时,整个数据流是怎么流动的(不考虑网络情况) 与冯诺依曼体系结构相关的一些知识 冯诺依曼体系结构推导 计算机的存在就是为了解决问题,而解…...

本地部署 DeepSeek-R1 模型
文章目录 霸屏的AIDeepSeek是什么?安装DeepSeek安装图形化界面总结 霸屏的AI 最近在刷视频的时候,总是突然突然出现一个名叫 DeepSeek 的玩意,像这样: 这样: 这不经激起我的一顿好奇心,这 DeepSeek 到底是个…...
Mybatis——sql映射文件中的增删查改
映射文件内的增删查改 准备工作 准备一张数据表,用于进行数据库的相关操作。新建maven工程, 导入mysql-connector-java和mybatis依赖。新建一个实体类,类的字段要和数据表的数据对应编写接口编写mybatis主配置文件 public class User {priva…...

【开源免费】基于Vue和SpringBoot的流浪宠物管理系统(附论文)
本文项目编号 T 182 ,文末自助获取源码 \color{red}{T182,文末自助获取源码} T182,文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…...

nth_element函数——C++快速选择函数
目录 1. 函数原型 2. 功能描述 3. 算法原理 4. 时间复杂度 5. 空间复杂度 6. 使用示例 8. 注意事项 9. 自定义比较函数 11. 总结 nth_element 是 C 标准库中提供的一个算法,位于 <algorithm> 头文件中,用于部分排序序列。它的主要功能是将…...

DNS缓存详解(DNS Cache Detailed Explanation)
DNS缓存详解 清空DNS缓存可以让网页访问更快捷。本文将从什么是DNS缓存、为什么清空DNS缓存、如何清空DNS缓存、清空DNS缓存存在的问题四个方面详细阐述DNS缓存清空的相关知识。 一、什么是DNS缓存 1、DNS缓存的定义: DNS缓存是域名系统服务在遇到DNS查询时自动…...

课设:【ID0022】火车票售票管理系统(前端)
技术栈:Java,JavaSwing,MySQL 数据库表数量:12个 1.功能描述 管理员功能 管理员是系统的高级用户,拥有对整个系统的全面管理权限。管理员的功能模块包括以下六个方面: 对用户管理增删查改 对售票员…...
Ruby 类和对象
Ruby 类和对象 引言 在软件开发中,类和对象是面向对象编程(OOP)的核心概念。Ruby 作为一种动态、解释型编程语言,也以简洁的方式支持面向对象编程。本文将深入探讨 Ruby 中的类和对象,包括它们的定义、创建、使用以及一些高级特性。 类与对象的定义 类 在 Ruby 中,类…...
Java基础知识总结(三十八)--读取数据
使用Reader体系,读取一个文本文件中的数据。返回 -1 ,标志读到结尾。 import java.io.*; class { public static void main(String[] args) throws IOException { /* 创建可以读取文本文件的流对象,让创建好的流对象和指定的文件相关联。…...
交错定理和切比雪夫节点的联系与区别
1. 交错定理 交错定理是切比雪夫逼近理论的核心内容,描述在区间[a,b]上,一个函数 f ( x ) f(x) f(x)的最佳一致逼近多项式 P n ( x ) P_n(x) Pn(x)的特性。定理内容如下: 设 f ( x ) f(x) f(x)是区间[a,b]上的连续函数, P n ( …...

大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据官,数据科学家 )
大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据官,数据科学家 ) 文章目录 大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据…...
GitHub Actions定时任务配置完全指南:从Cron语法到实战示例
你好,我是悦创。 博客网站:https://blog.bornforthis.cn/ 本教程将详细讲解如何在GitHub Actions中配置定时任务(Scheduled Tasks),帮助你掌握 Cron 表达式的编写规则和实际应用场景。 一、定时任务基础配置 1.1 核…...

Van-Nav:新年,将自己学习的项目地址统一整理搭建自己的私人导航站,供自己后续查阅使用,做技术的同学应该都有一个自己网站的梦想
嗨,大家好,我是小华同学,关注我们获得“最新、最全、最优质”开源项目和高效工作学习方法 Van-Nav是一个基于Vue.js开发的导航组件库,它提供了多种预设的样式和灵活的配置选项,使得开发者可以轻松地定制出符合项目需求…...

Easy系列PLC尺寸测量功能块ST代码(激光微距仪应用)
激光微距仪可以测量短距离内的产品尺寸,产品规格书的测量 精度可以到0.001mm。具体需要看不同的型号。 1、激光微距仪 2、尺寸测量应用 下面我们以测量高度为例子,设计一个高度测量功能块,同时给出测量数据和合格不合格指标。 3、高度测量功能块 4、复位完成信号 5、功能…...

Manacher 最长回文子串
方法:求字符串的 #include<bits/stdc.h> using namespace std; using lllong long; const int N1e69; char s[N]; int p[N];int main() {cin>>s1;int nstrlen(s1);s[0]^;s[2*n2]$; for(int i2*n1;i>1;i--){s[i](i&1)?#:s[i>>1];//右移表示…...

51单片机开发:独立键盘实验
实验目的:按下键盘1时,点亮LED灯1。 键盘原理图如下图所示,可见,由于接GND,当键盘按下时,P3相应的端口为低电平。 键盘按下时会出现抖动,时间通常为5-10ms,代码中通过延时函数delay…...

组件框架漏洞
一.基础概念 1.组件 定义:组件是软件开发中具有特定功能或特性的可重用部件或模块,能独立使用或集成到更大系统。 类型 前端 UI 组件:像按钮、下拉菜单、导航栏等,负责构建用户界面,提升用户交互体验。例如在电商 AP…...

OFDM系统仿真
1️⃣ OFDM的原理 1.1 介绍 OFDM是一种多载波调制技术,将输入数据分配到多个子载波上,每个子载波上可以独立使用 QAM、PSK 等传统调制技术进行调制。这些子载波之间互相正交,从而可以有效利用频谱并减少干扰。 1.2 OFDM的核心 多载波调制…...

Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...