当前位置: 首页 > news >正文

交错定理和切比雪夫节点的联系与区别

1. 交错定理

交错定理是切比雪夫逼近理论的核心内容,描述在区间[a,b]上,一个函数 f ( x ) f(x) f(x)的最佳一致逼近多项式 P n ( x ) P_n(x) Pn(x)的特性。定理内容如下:
f ( x ) f(x) f(x)是区间[a,b]上的连续函数, P n ( x ) P_n(x) Pn(x) f ( x ) f(x) f(x)的最佳一致逼近多项式(次数不超过 n n n)。那么,误差函数 E ( x ) = f ( x ) − P n ( x ) E(x)=f(x)-P_n(x) E(x)=f(x)Pn(x)在区间[a,b]上满足:
(1)交错性:误差函数 E ( x ) E(x) E(x)在区间[a,b]上至少有 n + 2 n+2 n+2个交错点,即存在 n + 2 n+2 n+2个点 x 0 , x 1 , . . . , x n + 1 x_0,x_1,...,x_{n+1} x0,x1,...,xn+1使得
E ( x i ) = ( − 1 ) i ∣ ∣ E ∣ ∣ ∞ 或 E ( x i ) = ( − 1 ) i + 1 ∣ ∣ E ∣ ∣ ∞ E(x_i)=(-1)^{i}||E||_\infty 或 E(x_i)=(-1)^{i+1}||E||_\infty E(xi)=(1)i∣∣EE(xi)=(1)i+1∣∣E
其中, ∣ ∣ E ∣ ∣ ∞ = m a x x ∈ [ a , b ] ∣ E ( x ) ∣ ||E||_\infty = max_{x\in [a,b]}|E(x)| ∣∣E=maxx[a,b]E(x)是误差的最大值。
(2)极值性:在这些交错点上,误差函数 E ( x ) E(x) E(x)达到其最大值或最小值,且符号交替变化。


2. 切比雪夫节点

切比雪夫节点是用于多项式插值的一种特殊节点选择,能够最小化插值误差的最大值,即最小化 ∣ ∣ f ( x ) − P n ( x ) ∣ ∣ ∞ ||f(x)-P_n(x)||_\infty ∣∣f(x)Pn(x)。在区间[-1,1]上, n + 1 n+1 n+1个切比雪夫节点定义为
x k = c o s ( ( 2 k + 1 ) π 2 ( n + 1 ) ) , k = 0 , 1 , . . . , n x_k=cos(\frac{(2k+1)\pi}{2(n+1)}), k=0,1,...,n xk=cos(2(n+1)(2k+1)π),k=0,1,...,n
对于一般区间[a,b],可以通过线性变换将切比雪夫节点映射到该区间:
x k = a + b 2 + b − a 2 c o s ( ( 2 k + 1 ) π 2 ( n + 1 ) ) , k = 0 , 1 , . . . , n x_k=\frac{a+b}{2}+\frac{b-a}{2}cos(\frac{(2k+1)\pi}{2(n+1)}), k=0,1,...,n xk=2a+b+2bacos(2(n+1)(2k+1)π),k=0,1,...,n
从切比雪夫节点的表达式可以看出,它在[-1,1]上分布不均匀,靠近区间端点的节点更密集,所以使用切比雪夫节点进行插值时,可以显著减少高次插值的震荡现象(龙格现象)。


3. 交错定理和切比雪夫节点对比

(1) 定义不同

  • 交错定理中的点是误差函数 E ( x ) = f ( x ) − P n ( x ) E(x)=f(x)-P_n(x) E(x)=f(x)Pn(x)的极值点;
  • 切比雪夫节点是切比雪夫多项式 T n + 1 ( x ) T_{n+1}(x) Tn+1(x)的极值点。

(2) 依赖对象不同

  • 交错定理中的点依赖于被逼近函数 f ( x ) f(x) f(x)和逼近多项式 P n ( x ) P_n(x) Pn(x)
  • 切比雪夫节点是固定的,仅依赖于区间[a,b]和节点数量 n + 1 n+1 n+1

(3) 应用场景不同

  • 交错定理用于描述最佳一致逼近多项式的特性;
  • 切比雪夫节点用于多项式插值,以最小化插值误差的最大值;

(4) 联系
- 当使用切比雪夫节点进行插值时,插值误差的分布接近交错定理所描述的最佳误差分布;
- 切比雪夫节点可以看做交错定理中最佳逼近的一种实现方式。


4. 有切比雪夫节点还需要交错定理的原因

切比雪夫节点和交错定理虽然在某些方面存在一定联系,但是也有一些明显的差别,在以下场景中仍然需要交错定理:
- 如果目标是找到一个多项式,使得其与目标函数的最大偏差最小(即最佳一致逼近),则需要使用交错定理;
- 切比雪夫节点依赖于在节点处精确匹配函数值,但是在某些问题中,我们可能无法或不需要再特定节点处精确匹配函数值,例如在函数逼近中,我们可能只关心整体误差的最小化,而不关心特定点的匹配。
- 切比雪夫节点虽然能够减小高次插值的震荡现象,但是在高次逼近中,仍然可能存在数值不稳定性,交错定理通过控制误差的分布,可以进一步提高逼近的稳定性和精度;
- 交错定理为逼近问题提供了理论依据,可以用于分析和验证逼近结果的有效性,例如,通过检查误差函数是否满足交错性,可以判断一个多项式是否是最佳一致逼近多项式;

相关文章:

交错定理和切比雪夫节点的联系与区别

1. 交错定理 交错定理是切比雪夫逼近理论的核心内容,描述在区间[a,b]上,一个函数 f ( x ) f(x) f(x)的最佳一致逼近多项式 P n ( x ) P_n(x) Pn​(x)的特性。定理内容如下: 设 f ( x ) f(x) f(x)是区间[a,b]上的连续函数, P n ( …...

大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据官,数据科学家 )

大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据官,数据科学家 ) 文章目录 大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据…...

GitHub Actions定时任务配置完全指南:从Cron语法到实战示例

你好,我是悦创。 博客网站:https://blog.bornforthis.cn/ 本教程将详细讲解如何在GitHub Actions中配置定时任务(Scheduled Tasks),帮助你掌握 Cron 表达式的编写规则和实际应用场景。 一、定时任务基础配置 1.1 核…...

Van-Nav:新年,将自己学习的项目地址统一整理搭建自己的私人导航站,供自己后续查阅使用,做技术的同学应该都有一个自己网站的梦想

嗨,大家好,我是小华同学,关注我们获得“最新、最全、最优质”开源项目和高效工作学习方法 Van-Nav是一个基于Vue.js开发的导航组件库,它提供了多种预设的样式和灵活的配置选项,使得开发者可以轻松地定制出符合项目需求…...

Easy系列PLC尺寸测量功能块ST代码(激光微距仪应用)

激光微距仪可以测量短距离内的产品尺寸,产品规格书的测量 精度可以到0.001mm。具体需要看不同的型号。 1、激光微距仪 2、尺寸测量应用 下面我们以测量高度为例子,设计一个高度测量功能块,同时给出测量数据和合格不合格指标。 3、高度测量功能块 4、复位完成信号 5、功能…...

Manacher 最长回文子串

方法&#xff1a;求字符串的 #include<bits/stdc.h> using namespace std; using lllong long; const int N1e69; char s[N]; int p[N];int main() {cin>>s1;int nstrlen(s1);s[0]^;s[2*n2]$; for(int i2*n1;i>1;i--){s[i](i&1)?#:s[i>>1];//右移表示…...

51单片机开发:独立键盘实验

实验目的&#xff1a;按下键盘1时&#xff0c;点亮LED灯1。 键盘原理图如下图所示&#xff0c;可见&#xff0c;由于接GND&#xff0c;当键盘按下时&#xff0c;P3相应的端口为低电平。 键盘按下时会出现抖动&#xff0c;时间通常为5-10ms&#xff0c;代码中通过延时函数delay…...

组件框架漏洞

一.基础概念 1.组件 定义&#xff1a;组件是软件开发中具有特定功能或特性的可重用部件或模块&#xff0c;能独立使用或集成到更大系统。 类型 前端 UI 组件&#xff1a;像按钮、下拉菜单、导航栏等&#xff0c;负责构建用户界面&#xff0c;提升用户交互体验。例如在电商 AP…...

OFDM系统仿真

1️⃣ OFDM的原理 1.1 介绍 OFDM是一种多载波调制技术&#xff0c;将输入数据分配到多个子载波上&#xff0c;每个子载波上可以独立使用 QAM、PSK 等传统调制技术进行调制。这些子载波之间互相正交&#xff0c;从而可以有效利用频谱并减少干扰。 1.2 OFDM的核心 多载波调制…...

基于单片机的盲人智能水杯系统(论文+源码)

1 总体方案设计 本次基于单片机的盲人智能水杯设计&#xff0c;采用的是DS18B20实现杯中水温的检测&#xff0c;采用HX711及应力片实现杯中水里的检测&#xff0c;采用DS1302实现时钟计时功能&#xff0c;采用TTS语音模块实现语音播报的功能&#xff0c;并结合STC89C52单片机作…...

安心即美的生活方式

如果你的心是安定的&#xff0c;那么&#xff0c;外界也就安静了。就像陶渊明说的&#xff1a;心远地自偏。不是走到偏远无人的边荒才能得到片刻清净&#xff0c;不需要使用洪荒之力去挣脱生活的枷锁&#xff0c;这是陶渊明式的中国知识分子的雅量。如果你自己是好的男人或女人…...

安卓(android)订餐菜单【Android移动开发基础案例教程(第2版)黑马程序员】

一、实验目的&#xff08;如果代码有错漏&#xff0c;可查看源码&#xff09; 1.掌握Activity生命周的每个方法。 2.掌握Activity的创建、配置、启动和关闭。 3.掌握Intent和IntentFilter的使用。 4.掌握Activity之间的跳转方式、任务栈和四种启动模式。 5.掌握在Activity中添加…...

【cocos creator】【模拟经营】餐厅经营demo

下载&#xff1a;【cocos creator】模拟经营餐厅经营...

前端 | 深入理解Promise

1. 引言 JavaScript 是一种单线程语言&#xff0c;这意味着它一次仅能执行一个任务。为了处理异步操作&#xff0c;JavaScript 提供了回调函数&#xff0c;但是随着项目处理并发任务的增加&#xff0c;回调地狱 (Callback Hell) 使异步代码很难维护。为此&#xff0c;ES6带来了…...

Visual Studio Code修改terminal字体

个人博客地址&#xff1a;Visual Studio Code修改terminal字体 | 一张假钞的真实世界 默认打开中断后字体显示如下&#xff1a; 打开设置&#xff0c;搜索配置项terminal.integrated.fontFamily&#xff0c;修改配置为monospace。修改后效果如下&#xff1a;...

自然语言处理-词嵌入 (Word Embeddings)

人工智能例子汇总&#xff1a;AI常见的算法和例子-CSDN博客 词嵌入&#xff08;Word Embedding&#xff09;是一种将单词或短语映射到高维向量空间的技术&#xff0c;使其能够以数学方式表示单词之间的关系。词嵌入能够捕捉语义信息&#xff0c;使得相似的词在向量空间中具有…...

自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

import numpy as np import torch import torch.nn as nn import torch.optim as optim from sklearn.metrics import precision_score, recall_score, f1_score# 数据准备 class1_points np.array([[1.9, 1.2],[1.5, 2.1],[1.9, 0.5],[1.5, 0.9],[0.9, 1.2],[1.1, 1.7],[1.4,…...

【论文笔记】Fast3R:前向并行muti-view重建方法

众所周知&#xff0c;DUSt3R只适合做稀疏视角重建&#xff0c;与sapnn3r的目的类似&#xff0c;这篇文章以并行的方法&#xff0c;扩展了DUSt3R在多视图重建中的能力。 abstract 多视角三维重建仍然是计算机视觉领域的核心挑战&#xff0c;尤其是在需要跨不同视角实现精确且可…...

谈谈你所了解的AR技术吧!

深入探讨 AR 技术的原理与应用 在科技飞速发展的今天&#xff0c;AR&#xff08;增强现实&#xff09;技术已经悄然改变了我们与周围世界互动的方式。你是否曾想象过如何能够通过手机屏幕与虚拟物体进行实时互动&#xff1f;在这篇文章中&#xff0c;我们将深入探讨AR技术的原…...

upload labs靶场

upload labs靶场 注意:本人关卡后面似乎相比正常的关卡少了一关&#xff0c;所以每次关卡名字都是1才可以和正常关卡在同一关 一.个人信息 个人名称&#xff1a;张嘉玮 二.解题情况 三.解题过程 题目&#xff1a;up load labs靶场 pass 1前后端 思路及解题&#xff1a;…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP&#xff0c;结果IP质量不佳&#xff0c;项目效率低下不说&#xff0c;还可能带来莫名的网络问题&#xff0c;是不是太闹心了&#xff1f;尤其是在面对海外专线IP时&#xff0c;到底怎么才能买到适合自己的呢&#xff1f;所以&#xff0c;挑IP绝对是个技…...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

【堆垛策略】设计方法

堆垛策略的设计是积木堆叠系统的核心&#xff0c;直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法&#xff0c;涵盖基础规则、优化算法和容错机制&#xff1a; 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则&#xff1a; 大尺寸/重量积木在下&#xf…...

虚幻基础:角色旋转

能帮到你的话&#xff0c;就给个赞吧 &#x1f618; 文章目录 移动组件使用控制器所需旋转&#xff1a;组件 使用 控制器旋转将旋转朝向运动&#xff1a;组件 使用 移动方向旋转 控制器旋转和移动旋转 缺点移动旋转&#xff1a;必须移动才能旋转&#xff0c;不移动不旋转控制器…...

C#中用于控制自定义特性(Attribute)

我们来详细解释一下 [AttributeUsage(AttributeTargets.Class, AllowMultiple false, Inherited false)] 这个 C# 属性。 在 C# 中&#xff0c;Attribute&#xff08;特性&#xff09;是一种用于向程序元素&#xff08;如类、方法、属性等&#xff09;添加元数据的机制。Attr…...