当前位置: 首页 > news >正文

交错定理和切比雪夫节点的联系与区别

1. 交错定理

交错定理是切比雪夫逼近理论的核心内容,描述在区间[a,b]上,一个函数 f ( x ) f(x) f(x)的最佳一致逼近多项式 P n ( x ) P_n(x) Pn(x)的特性。定理内容如下:
f ( x ) f(x) f(x)是区间[a,b]上的连续函数, P n ( x ) P_n(x) Pn(x) f ( x ) f(x) f(x)的最佳一致逼近多项式(次数不超过 n n n)。那么,误差函数 E ( x ) = f ( x ) − P n ( x ) E(x)=f(x)-P_n(x) E(x)=f(x)Pn(x)在区间[a,b]上满足:
(1)交错性:误差函数 E ( x ) E(x) E(x)在区间[a,b]上至少有 n + 2 n+2 n+2个交错点,即存在 n + 2 n+2 n+2个点 x 0 , x 1 , . . . , x n + 1 x_0,x_1,...,x_{n+1} x0,x1,...,xn+1使得
E ( x i ) = ( − 1 ) i ∣ ∣ E ∣ ∣ ∞ 或 E ( x i ) = ( − 1 ) i + 1 ∣ ∣ E ∣ ∣ ∞ E(x_i)=(-1)^{i}||E||_\infty 或 E(x_i)=(-1)^{i+1}||E||_\infty E(xi)=(1)i∣∣EE(xi)=(1)i+1∣∣E
其中, ∣ ∣ E ∣ ∣ ∞ = m a x x ∈ [ a , b ] ∣ E ( x ) ∣ ||E||_\infty = max_{x\in [a,b]}|E(x)| ∣∣E=maxx[a,b]E(x)是误差的最大值。
(2)极值性:在这些交错点上,误差函数 E ( x ) E(x) E(x)达到其最大值或最小值,且符号交替变化。


2. 切比雪夫节点

切比雪夫节点是用于多项式插值的一种特殊节点选择,能够最小化插值误差的最大值,即最小化 ∣ ∣ f ( x ) − P n ( x ) ∣ ∣ ∞ ||f(x)-P_n(x)||_\infty ∣∣f(x)Pn(x)。在区间[-1,1]上, n + 1 n+1 n+1个切比雪夫节点定义为
x k = c o s ( ( 2 k + 1 ) π 2 ( n + 1 ) ) , k = 0 , 1 , . . . , n x_k=cos(\frac{(2k+1)\pi}{2(n+1)}), k=0,1,...,n xk=cos(2(n+1)(2k+1)π),k=0,1,...,n
对于一般区间[a,b],可以通过线性变换将切比雪夫节点映射到该区间:
x k = a + b 2 + b − a 2 c o s ( ( 2 k + 1 ) π 2 ( n + 1 ) ) , k = 0 , 1 , . . . , n x_k=\frac{a+b}{2}+\frac{b-a}{2}cos(\frac{(2k+1)\pi}{2(n+1)}), k=0,1,...,n xk=2a+b+2bacos(2(n+1)(2k+1)π),k=0,1,...,n
从切比雪夫节点的表达式可以看出,它在[-1,1]上分布不均匀,靠近区间端点的节点更密集,所以使用切比雪夫节点进行插值时,可以显著减少高次插值的震荡现象(龙格现象)。


3. 交错定理和切比雪夫节点对比

(1) 定义不同

  • 交错定理中的点是误差函数 E ( x ) = f ( x ) − P n ( x ) E(x)=f(x)-P_n(x) E(x)=f(x)Pn(x)的极值点;
  • 切比雪夫节点是切比雪夫多项式 T n + 1 ( x ) T_{n+1}(x) Tn+1(x)的极值点。

(2) 依赖对象不同

  • 交错定理中的点依赖于被逼近函数 f ( x ) f(x) f(x)和逼近多项式 P n ( x ) P_n(x) Pn(x)
  • 切比雪夫节点是固定的,仅依赖于区间[a,b]和节点数量 n + 1 n+1 n+1

(3) 应用场景不同

  • 交错定理用于描述最佳一致逼近多项式的特性;
  • 切比雪夫节点用于多项式插值,以最小化插值误差的最大值;

(4) 联系
- 当使用切比雪夫节点进行插值时,插值误差的分布接近交错定理所描述的最佳误差分布;
- 切比雪夫节点可以看做交错定理中最佳逼近的一种实现方式。


4. 有切比雪夫节点还需要交错定理的原因

切比雪夫节点和交错定理虽然在某些方面存在一定联系,但是也有一些明显的差别,在以下场景中仍然需要交错定理:
- 如果目标是找到一个多项式,使得其与目标函数的最大偏差最小(即最佳一致逼近),则需要使用交错定理;
- 切比雪夫节点依赖于在节点处精确匹配函数值,但是在某些问题中,我们可能无法或不需要再特定节点处精确匹配函数值,例如在函数逼近中,我们可能只关心整体误差的最小化,而不关心特定点的匹配。
- 切比雪夫节点虽然能够减小高次插值的震荡现象,但是在高次逼近中,仍然可能存在数值不稳定性,交错定理通过控制误差的分布,可以进一步提高逼近的稳定性和精度;
- 交错定理为逼近问题提供了理论依据,可以用于分析和验证逼近结果的有效性,例如,通过检查误差函数是否满足交错性,可以判断一个多项式是否是最佳一致逼近多项式;

相关文章:

交错定理和切比雪夫节点的联系与区别

1. 交错定理 交错定理是切比雪夫逼近理论的核心内容,描述在区间[a,b]上,一个函数 f ( x ) f(x) f(x)的最佳一致逼近多项式 P n ( x ) P_n(x) Pn​(x)的特性。定理内容如下: 设 f ( x ) f(x) f(x)是区间[a,b]上的连续函数, P n ( …...

大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据官,数据科学家 )

大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据官,数据科学家 ) 文章目录 大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据…...

GitHub Actions定时任务配置完全指南:从Cron语法到实战示例

你好,我是悦创。 博客网站:https://blog.bornforthis.cn/ 本教程将详细讲解如何在GitHub Actions中配置定时任务(Scheduled Tasks),帮助你掌握 Cron 表达式的编写规则和实际应用场景。 一、定时任务基础配置 1.1 核…...

Van-Nav:新年,将自己学习的项目地址统一整理搭建自己的私人导航站,供自己后续查阅使用,做技术的同学应该都有一个自己网站的梦想

嗨,大家好,我是小华同学,关注我们获得“最新、最全、最优质”开源项目和高效工作学习方法 Van-Nav是一个基于Vue.js开发的导航组件库,它提供了多种预设的样式和灵活的配置选项,使得开发者可以轻松地定制出符合项目需求…...

Easy系列PLC尺寸测量功能块ST代码(激光微距仪应用)

激光微距仪可以测量短距离内的产品尺寸,产品规格书的测量 精度可以到0.001mm。具体需要看不同的型号。 1、激光微距仪 2、尺寸测量应用 下面我们以测量高度为例子,设计一个高度测量功能块,同时给出测量数据和合格不合格指标。 3、高度测量功能块 4、复位完成信号 5、功能…...

Manacher 最长回文子串

方法&#xff1a;求字符串的 #include<bits/stdc.h> using namespace std; using lllong long; const int N1e69; char s[N]; int p[N];int main() {cin>>s1;int nstrlen(s1);s[0]^;s[2*n2]$; for(int i2*n1;i>1;i--){s[i](i&1)?#:s[i>>1];//右移表示…...

51单片机开发:独立键盘实验

实验目的&#xff1a;按下键盘1时&#xff0c;点亮LED灯1。 键盘原理图如下图所示&#xff0c;可见&#xff0c;由于接GND&#xff0c;当键盘按下时&#xff0c;P3相应的端口为低电平。 键盘按下时会出现抖动&#xff0c;时间通常为5-10ms&#xff0c;代码中通过延时函数delay…...

组件框架漏洞

一.基础概念 1.组件 定义&#xff1a;组件是软件开发中具有特定功能或特性的可重用部件或模块&#xff0c;能独立使用或集成到更大系统。 类型 前端 UI 组件&#xff1a;像按钮、下拉菜单、导航栏等&#xff0c;负责构建用户界面&#xff0c;提升用户交互体验。例如在电商 AP…...

OFDM系统仿真

1️⃣ OFDM的原理 1.1 介绍 OFDM是一种多载波调制技术&#xff0c;将输入数据分配到多个子载波上&#xff0c;每个子载波上可以独立使用 QAM、PSK 等传统调制技术进行调制。这些子载波之间互相正交&#xff0c;从而可以有效利用频谱并减少干扰。 1.2 OFDM的核心 多载波调制…...

基于单片机的盲人智能水杯系统(论文+源码)

1 总体方案设计 本次基于单片机的盲人智能水杯设计&#xff0c;采用的是DS18B20实现杯中水温的检测&#xff0c;采用HX711及应力片实现杯中水里的检测&#xff0c;采用DS1302实现时钟计时功能&#xff0c;采用TTS语音模块实现语音播报的功能&#xff0c;并结合STC89C52单片机作…...

安心即美的生活方式

如果你的心是安定的&#xff0c;那么&#xff0c;外界也就安静了。就像陶渊明说的&#xff1a;心远地自偏。不是走到偏远无人的边荒才能得到片刻清净&#xff0c;不需要使用洪荒之力去挣脱生活的枷锁&#xff0c;这是陶渊明式的中国知识分子的雅量。如果你自己是好的男人或女人…...

安卓(android)订餐菜单【Android移动开发基础案例教程(第2版)黑马程序员】

一、实验目的&#xff08;如果代码有错漏&#xff0c;可查看源码&#xff09; 1.掌握Activity生命周的每个方法。 2.掌握Activity的创建、配置、启动和关闭。 3.掌握Intent和IntentFilter的使用。 4.掌握Activity之间的跳转方式、任务栈和四种启动模式。 5.掌握在Activity中添加…...

【cocos creator】【模拟经营】餐厅经营demo

下载&#xff1a;【cocos creator】模拟经营餐厅经营...

前端 | 深入理解Promise

1. 引言 JavaScript 是一种单线程语言&#xff0c;这意味着它一次仅能执行一个任务。为了处理异步操作&#xff0c;JavaScript 提供了回调函数&#xff0c;但是随着项目处理并发任务的增加&#xff0c;回调地狱 (Callback Hell) 使异步代码很难维护。为此&#xff0c;ES6带来了…...

Visual Studio Code修改terminal字体

个人博客地址&#xff1a;Visual Studio Code修改terminal字体 | 一张假钞的真实世界 默认打开中断后字体显示如下&#xff1a; 打开设置&#xff0c;搜索配置项terminal.integrated.fontFamily&#xff0c;修改配置为monospace。修改后效果如下&#xff1a;...

自然语言处理-词嵌入 (Word Embeddings)

人工智能例子汇总&#xff1a;AI常见的算法和例子-CSDN博客 词嵌入&#xff08;Word Embedding&#xff09;是一种将单词或短语映射到高维向量空间的技术&#xff0c;使其能够以数学方式表示单词之间的关系。词嵌入能够捕捉语义信息&#xff0c;使得相似的词在向量空间中具有…...

自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

import numpy as np import torch import torch.nn as nn import torch.optim as optim from sklearn.metrics import precision_score, recall_score, f1_score# 数据准备 class1_points np.array([[1.9, 1.2],[1.5, 2.1],[1.9, 0.5],[1.5, 0.9],[0.9, 1.2],[1.1, 1.7],[1.4,…...

【论文笔记】Fast3R:前向并行muti-view重建方法

众所周知&#xff0c;DUSt3R只适合做稀疏视角重建&#xff0c;与sapnn3r的目的类似&#xff0c;这篇文章以并行的方法&#xff0c;扩展了DUSt3R在多视图重建中的能力。 abstract 多视角三维重建仍然是计算机视觉领域的核心挑战&#xff0c;尤其是在需要跨不同视角实现精确且可…...

谈谈你所了解的AR技术吧!

深入探讨 AR 技术的原理与应用 在科技飞速发展的今天&#xff0c;AR&#xff08;增强现实&#xff09;技术已经悄然改变了我们与周围世界互动的方式。你是否曾想象过如何能够通过手机屏幕与虚拟物体进行实时互动&#xff1f;在这篇文章中&#xff0c;我们将深入探讨AR技术的原…...

upload labs靶场

upload labs靶场 注意:本人关卡后面似乎相比正常的关卡少了一关&#xff0c;所以每次关卡名字都是1才可以和正常关卡在同一关 一.个人信息 个人名称&#xff1a;张嘉玮 二.解题情况 三.解题过程 题目&#xff1a;up load labs靶场 pass 1前后端 思路及解题&#xff1a;…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...