当前位置: 首页 > news >正文

自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import precision_score, recall_score, f1_score# 数据准备
class1_points = np.array([[1.9, 1.2],[1.5, 2.1],[1.9, 0.5],[1.5, 0.9],[0.9, 1.2],[1.1, 1.7],[1.4, 1.1]])
class2_points = np.array([[3.2, 3.2],[3.7, 2.9],[3.2, 2.6],[1.7, 3.3],[3.4, 2.6],[4.1, 2.3],[3.0, 2.9]])x_train = np.concatenate((class1_points, class2_points), axis=0)
y_train = np.concatenate((np.zeros(len(class1_points)), np.ones(len(class2_points))))x_train_tensor = torch.tensor(x_train, dtype=torch.float32)
y_train_tensor = torch.tensor(y_train, dtype=torch.float32)# 设置随机种子
seed = 42
torch.manual_seed(seed)# 定义模型
class LogisticRegreModel(nn.Module):def __init__(self):super(LogisticRegreModel, self).__init__()self.fc = nn.Linear(2, 1)def forward(self, x):x = self.fc(x)x = torch.sigmoid(x)return xmodel = LogisticRegreModel()# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.05)# 训练模型
epochs = 1000
for epoch in range(1, epochs + 1):y_pred = model(x_train_tensor)loss = criterion(y_pred, y_train_tensor.unsqueeze(1))optimizer.zero_grad()loss.backward()optimizer.step()if epoch % 50 == 0 or epoch == 1:print(f"epoch: {epoch}, loss: {loss.item()}")# 保存模型
torch.save(model.state_dict(), 'model.pth')# 加载模型
model = LogisticRegreModel()
model.load_state_dict(torch.load('model.pth'))
# 设置模型为评估模式
model.eval()# 进行预测
with torch.no_grad():y_pred = model(x_train_tensor)y_pred_class = (y_pred > 0.5).float().squeeze()# 计算精确度、召回率和F1分数
precision = precision_score(y_train_tensor.numpy(), y_pred_class.numpy())
recall = recall_score(y_train_tensor.numpy(), y_pred_class.numpy())
f1 = f1_score(y_train_tensor.numpy(), y_pred_class.numpy())print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1 Score: {f1:.4f}")

相关文章:

自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

import numpy as np import torch import torch.nn as nn import torch.optim as optim from sklearn.metrics import precision_score, recall_score, f1_score# 数据准备 class1_points np.array([[1.9, 1.2],[1.5, 2.1],[1.9, 0.5],[1.5, 0.9],[0.9, 1.2],[1.1, 1.7],[1.4,…...

【论文笔记】Fast3R:前向并行muti-view重建方法

众所周知,DUSt3R只适合做稀疏视角重建,与sapnn3r的目的类似,这篇文章以并行的方法,扩展了DUSt3R在多视图重建中的能力。 abstract 多视角三维重建仍然是计算机视觉领域的核心挑战,尤其是在需要跨不同视角实现精确且可…...

谈谈你所了解的AR技术吧!

深入探讨 AR 技术的原理与应用 在科技飞速发展的今天,AR(增强现实)技术已经悄然改变了我们与周围世界互动的方式。你是否曾想象过如何能够通过手机屏幕与虚拟物体进行实时互动?在这篇文章中,我们将深入探讨AR技术的原…...

upload labs靶场

upload labs靶场 注意:本人关卡后面似乎相比正常的关卡少了一关,所以每次关卡名字都是1才可以和正常关卡在同一关 一.个人信息 个人名称:张嘉玮 二.解题情况 三.解题过程 题目:up load labs靶场 pass 1前后端 思路及解题:…...

搜索引擎友好:设计快速收录的网站架构

本文来自:百万收录网 原文链接:https://www.baiwanshoulu.com/14.html 为了设计一个搜索引擎友好的网站架构,以实现快速收录,可以从以下几个方面入手: 一、清晰的目录结构与层级 合理划分内容:目录结构应…...

基于 oneM2M 标准的空气质量监测系统的互操作性

论文标题 英文标题: Interoperability of Air Quality Monitoring Systems through the oneM2M Standard 中文标题: 基于 oneM2M 标准的空气质量监测系统的互操作性 作者信息 Jonnar Danielle Diosana, Gabriel Angelo Limlingan, Danielle Bryan Sor…...

春晚舞台上的人形机器人:科技与文化的奇妙融合

文章目录 人形机器人Unitree H1的“硬核”实力传统文化与现代科技的创新融合网友热议与文化共鸣未来展望:科技与文化的更多可能结语 2025 年央视春晚的舞台,无疑是全球华人目光聚焦的焦点。就在这个盛大的舞台上,一场名为《秧BOT》的创意融合…...

零基础学习书生.浦语大模型-入门岛

第一关:Linux基础知识 Cursor连接服务器 使用Remote - SSH插件即可 注:46561:服务器端口号 运行指令 python hello_world.py端口映射 ssh -p 46561 rootssh.intern-ai.org.cn -CNg -L 7860:127.0.0.1:7860 -o StrictHostKeyCheckingno …...

Gurobi基础语法之 addConstr, addConstrs, addQConstr, addMQConstr

在新版本的 Gurobi 中,向 addConstr 这个方法中传入一个 TempConstr 对象,在模型中就会根据这个对象生成一个约束。更重要的是:TempConstr 对象可以传给所有addConstr系列方法,所以下面先介绍 TempConstr 对象 TempConstr TempC…...

数据结构---图的遍历

图的遍历(Travering Graph):从图的某一顶点出发,访遍图中的其余顶点,且每个顶点仅被访问一次,图的遍历算法是各种图的操作的基础。 复杂性:图的任意顶点可能和其余的顶点相邻接,可能在访问了某个顶点后,沿某条路径搜索…...

Qwen 模型自动构建知识图谱,生成病例 + 评价指标优化策略

关于数据库和检索方式的选择 AI Medical Consultant for Visual Question Answering (VQA) 系统:更适合在前端使用向量数据库(如FAISS)结合关系型数据库来实现图像和文本的检索与存储。因为在 VQA 场景中,你需要对患者上传的图像或…...

.Net Web API 访问权限限定

看到一个代码是这样的: c# webapi 上 [Route("api/admin/file-service"), AuthorizeAdmin] AuthorizeAdmin 的定义是这样的 public class AuthorizeAdminAttribute : AuthorizeAttribute {public AuthorizeAdminAttribute(){Roles "admin"…...

项目架构调整,切换版本并发布到中央仓库

文章目录 0.完成运维篇maven发布到中央仓库的部分1.配置server到settings.xml2.配置gpg 1.架构调整1.sunrays-dependencies(统一管理依赖和配置)1.作为单独的模块2.填写发布到中央仓库的配置1.基础属性2.基本配置3.插件配置 3.完整的pom.xml 2.sunrays-f…...

考试知识点位运算

深入理解位运算 在C编程的世界里,位运算作为一种直接对二进制位进行操作的运算方式,虽然不像加减乘除等算术运算那样广为人知,却在许多关键领域发挥着至关重要的作用。从底层系统开发到高效算法设计,位运算都展现出其独特的魅力与…...

matlab快速入门(2)-- 数据处理与可视化

MATLAB的数据处理 1. 数据导入与导出 (1) 从文件读取数据 Excel 文件:data readtable(data.xlsx); % 读取为表格(Table)CSV 文件:data readtable(data.csv); % 自动处理表头和分隔符文本文件:data load(data.t…...

Kafka中文文档

文章来源:https://kafka.cadn.net.cn 什么是事件流式处理? 事件流是人体中枢神经系统的数字等价物。它是 为“永远在线”的世界奠定技术基础,在这个世界里,企业越来越多地使用软件定义 和 automated,而软件的用户更…...

Python-列表

3.1 列表是什么 在Python中,列表是一种非常重要的数据结构,用于存储一系列有序的元素。列表中的每个元素都有一个索引,索引从0开始。列表可以包含任何类型的元素,包括其他列表。 # 创建一个列表my_list [1, 2, 3, four, 5.0]…...

51单片机开发:定时器中断

目标:利用定时器中断,每隔1s开启/熄灭LED1灯。 外部中断结构图如下图所示,要使用定时器中断T0,须开启TE0、ET0。: 系统中断号如下图所示:定时器0的中断号为1。 定时器0的工作方式1原理图如下图所示&#x…...

【HarmonyOS之旅】基于ArkTS开发(三) -> 兼容JS的类Web开发(二)

目录 1 -> HML语法 1.1 -> 页面结构 1.2 -> 数据绑定 1.3 -> 普通事件绑定 1.4 -> 冒泡事件绑定5 1.5 -> 捕获事件绑定5 1.6 -> 列表渲染 1.7 -> 条件渲染 1.8 -> 逻辑控制块 1.9 -> 模板引用 2 -> CSS语法 2.1 -> 尺寸单位 …...

算法【混合背包】

混合背包是指多种背包模型的组合与转化。 下面通过题目加深理解。 题目一 测试链接:1742 -- Coins 分析:这道题可以通过硬币的个数将其转化为01背包,完全背包和多重背包。如果硬币的个数是1个,则是01背包;如果硬币的…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

Rust 开发环境搭建

环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行&#xff1a; rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu ​ 2、Hello World fn main() { println…...

JDK 17 序列化是怎么回事

如何序列化&#xff1f;其实很简单&#xff0c;就是根据每个类型&#xff0c;用工厂类调用。逐个完成。 没什么漂亮的代码&#xff0c;只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...

聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇

根据 QYResearch 发布的市场报告显示&#xff0c;全球市场规模预计在 2031 年达到 9848 万美元&#xff0c;2025 - 2031 年期间年复合增长率&#xff08;CAGR&#xff09;为 3.7%。在竞争格局上&#xff0c;市场集中度较高&#xff0c;2024 年全球前十强厂商占据约 74.0% 的市场…...

文件上传漏洞防御全攻略

要全面防范文件上传漏洞&#xff0c;需构建多层防御体系&#xff0c;结合技术验证、存储隔离与权限控制&#xff1a; &#x1f512; 一、基础防护层 前端校验&#xff08;仅辅助&#xff09; 通过JavaScript限制文件后缀名&#xff08;白名单&#xff09;和大小&#xff0c;提…...