OFDM系统仿真
1️⃣ OFDM的原理
1.1 介绍
OFDM是一种多载波调制技术,将输入数据分配到多个子载波上,每个子载波上可以独立使用 QAM、PSK 等传统调制技术进行调制。这些子载波之间互相正交,从而可以有效利用频谱并减少干扰。
1.2 OFDM的核心
- 多载波调制
高速数据流被拆分成多个并行的低速数据流,每个低速数据流被分配到正交的子载波上 - 子载波正交性
子载波的正交性是OFDM的核心,正交性保证了不同子载波之间不会相互干扰 - 使用FFT/IFFT的实现
OFDM使用IFFT生成正交的子载波信号,而在接收端通过FFT恢复频域信号
1.3 OFDM系统架构

以MQAM调制为例,假设OFDM系统的输入信号是串行的二进制码元,每个二进制码元的持续时间为 T b T_\mathrm{b} Tb。
分帧:首先,将输入信号分帧,每一帧包含F个二进制码元,即包含F比特。
分组:然后针对每一帧来说,每帧都会再进一步分组,即把F个二进制码元分成N组,每组中的比特数可以不同。例如,第 i i i组包含的比特数是 b i b_i bi。
码元转换:将每组中的 b i b_i bi个比特看作一个 M i M_i Mi进制的码元 B i B_i Bi, b i b_i bi与 M i M_i Mi的关系是 b i = l o g 2 M i b_i=log_2M_i bi=log2Mi
串并转换:此步骤将串行的N个码元 B i B_i Bi变成N路并行码元 B i B_i Bi。并行码元的持续时间相同,都是 T B = F ⋅ T b T_B=F·T_b TB=F⋅Tb

映射:在MQAM调制中,一个并行码元 B i B_i Bi可以用平面上的一个点表示,将 M i M_i Mi进制的码元 B i B_i Bi变成一一对应的复数 B i \boldsymbol{B_i} Bi的过程称为映射过程。例如 B i B_i Bi包含4bit “1100”,那就是16进制码元,进行的是16QAM调制,假设星座图如下图所示,则其相位为45°,振幅为 A / 2 A/\sqrt{2} A/2。此映射过程将“1100”映射为复数形式 B i = ( A / 2 ) e j π / 4 \boldsymbol{B_i}=(A/\sqrt{2})e^{j\pi/4} Bi=(A/2)ejπ/4

调制:N路并行码元 B i B_i Bi对N个子载波进行不同的MQAM调制。由于各个并行码元 B i B_i Bi包含比特数不同,所以调制方式不同,举个例子,若并行码元 B i B_i Bi包含4bit,那就是16QAM调制;包含8bit就是64QAM调制
IDFT:使用IDFT实现正交频分复用
-
最低子载波频率设定:为了用IDFT实现OFDM,先将OFDM的最低子载波频率设定为0。这是为了满足IDFT公式: s ( k ) = 1 K ∑ n = 0 K − 1 S ( n ) e j ( 2 π / K ) n k , k = 0 , 1 , 2 , ⋯ , K − 1 s(k)=\frac{1}{\sqrt{K}} \sum_{n=0}^{K-1} \boldsymbol{S}(n) \mathrm{e}^{\mathrm{j}(2 \pi / K) n k} \quad ,k=0,1,2, \cdots, K-1 s(k)=K1n=0∑K−1S(n)ej(2π/K)nk,k=0,1,2,⋯,K−1在n=0时,其右端第一项的指数因子等于1的条件,方便后续数学运算和信号处理。
-
IDFT项数设定与等效复码元序列生成:假设IDFT的项数为K,设置K=2N,即IDFT的项数等于子信道数目N的2倍。根据下述共轭对称性条件:
若信号的时域函数 s ( k ) s(k) s(k) 是实函数,则其 K K K 点 DFT 的值 S ( n ) \boldsymbol{S}(n) S(n) 一定满足对称性条件: S ( K − k ) = S ∗ ( k ) k = 0 , 1 , 2 , ⋯ , K − 1 \boldsymbol{S}(K-k)=\boldsymbol{S}^*(k) \quad k=0,1,2, \cdots, K-1 S(K−k)=S∗(k)k=0,1,2,⋯,K−1式中: S ∗ ( k ) \boldsymbol{S}^*(k) S∗(k) 为 S ( k ) \boldsymbol{S}(k) S(k) 的复共轭。
从N个并行复数码元序列 { B i } \left\{\boldsymbol{B_i}\right\} {Bi}( i = 0 , 1 , ⋯ , N − 1 ) i=0,1, \cdots, N-1) i=0,1,⋯,N−1) 生成 K = 2 N K=2 N K=2N 【将 IDFT 项数设为2N】个等效复数码元序列 { B n ′ } ( \left\{\boldsymbol{B_n}^{\prime}\right\}( {Bn′}( n = 0 , 1 , ⋯ , 2 N − 1 ) n=0,1, \cdots, 2 N-1) n=0,1,⋯,2N−1),具体规则如下:
① 当 n = 1 , 2 , ⋯ , N − 1 n=1,2, \cdots, N-1 n=1,2,⋯,N−1 时, B K − n − 1 ′ = B n ∗ ( B n ∗ \boldsymbol{B}_{K-n-1}^{\prime}=\boldsymbol{B}_n^* \quad\left(B_n^*\right. BK−n−1′=Bn∗(Bn∗ 为 B n B_n Bn 的共轭复数)。
② 当 n = N , N + 1 , ⋯ , 2 N − 2 n=N, N+1, \cdots, 2 N-2 n=N,N+1,⋯,2N−2 时, B K − n − 1 ′ = B K − n − 1 \boldsymbol{B}_{K-n-1}^{\prime}=\boldsymbol{B}_{K-n-1} BK−n−1′=BK−n−1 。
③ B 0 ′ = Re ( B 0 ) \boldsymbol{B}_0^{\prime}=\operatorname{Re}\left(B_0\right) B0′=Re(B0) ,即取 B 0 \boldsymbol{B}_0 B0 的实部。
④ B K − 1 ′ = B 2 N − 1 ′ = Im ( B 0 ) \boldsymbol{B}_{K-1}^{\prime}=\boldsymbol{B}_{2 N-1}^{\prime}=\operatorname{Im}\left(\boldsymbol{B}_0\right) BK−1′=B2N−1′=Im(B0) ,即取 B 0 \boldsymbol{B}_0 B0 的虚部。补充:为什么一定要K=2N?
OFDM 系统最终需要生成实值的时域信号进行传输(实信号在实际硬件中更易处理和传输)。IDFT 具有这样的特性:当频域序列满足一定的共轭对称性质时,经过 IDFT 变换后得到的时域序列是实值的。通过将 IDFT 项数设为 2 N 2 N 2N ,可以利用这一性质,通过对 N N N 个并行复数码元序列构建出具有共轭对称性质的 2 N 2 N 2N 个等效复数码元序列(如前面提到的通过特定的对称规则生成),从而确保经过 IDFT 后得到实值的时域信号。 -
OFDM信号的离散形式:将生成的新码元序列 { B n ′ } \left\{\boldsymbol{B}_n^{\prime}\right\} {Bn′} 作为频域信号代入IDFT公式,得到时域离散信号:
e ( k ) = 1 K ∑ n = 0 K − 1 B n ′ e j ( 2 π / K ) n k ( k = 0 , 1 , ⋯ , K − 1 ) e(k)=\frac{1}{\sqrt{K}} \sum_{n=0}^{K-1} \boldsymbol{B}_n^{\prime} \mathrm{e}^{\mathrm{j}(2 \pi / K) n k} \quad(k=0,1, \cdots, K-1) e(k)=K1n=0∑K−1Bn′ej(2π/K)nk(k=0,1,⋯,K−1)
这里的 e ( k ) e(k) e(k) 是离散的,且 e ( k ) = e ( k T B / K ) e(k)=e\left(k T_{\mathrm{B}} / K\right) e(k)=e(kTB/K),即在离散的时间点 k T B / K k T_{\mathrm{B}} / K kTB/K 上对连续的 OFDM 信号 e ( t ) e(t) e(t) 进行抽样得到了 e ( k ) e(k) e(k)
循环前缀:对每个 OFDM 符号添加循环前缀,以对抗多径效应等引起的干扰,它是在时域上操作的【OFDM信号长啥样??? 例如,50个OFDM符号,每个符号64个子载波,那矩阵大小就是64×50,加8个循环前缀的话,就会变成72×50】
并串转换:此时的信号 e ( k ) e(k) e(k) 在时域上还是以并行的形式存在,为了后续能够进行 D/A 转换以及在实际信道中传输【因为D/A 转换器通常接收串行的信号】,需要将这些并行的离散信号进行并串转换,将其变为串行的离散信号序列
通过D/A转换得到连续形式:离散抽样信号 e ( k ) e(k) e(k)经过数模(D/A)转换后就得到OFDM 信号的连续时间表达式:
e ( t ) = 1 K ∑ n = 0 K − 1 B n ′ e j ( 2 π / T B ) n t ( 0 ⩽ t ⩽ T B ) e(t)=\frac{1}{\sqrt{K}} \sum_{n=0}^{K-1} \boldsymbol{B}_n^{\prime} \mathrm{e}^{\mathrm{j}\left(2 \pi / T_{\mathrm{B}}\right) n t} \quad\left(0 \leqslant t \leqslant T_{\mathrm{B}}\right) e(t)=K1n=0∑K−1Bn′ej(2π/TB)nt(0⩽t⩽TB)
它是从离散抽样信号 e ( k ) e(k) e(k) 推导而来的,体现了 OFDM 信号在整个时间区间 [ 0 , T B ] \left[0, T_{\mathrm{B}}\right] [0,TB] 上的连续变化情况。在这个表达式中,每一项 B n ′ e j ( 2 π / T B ) n t \boldsymbol{B}_n^{\prime} \mathrm{e}^{\mathrm{j}\left(2 \pi / T_{\mathrm{B}}\right) n t} Bn′ej(2π/TB)nt 都代表一个子载波信号,不同的 n n n 对应不同的子载波,通过对这些子载波信号进行叠加,就得到了完整的 OFDM 信号 e ( t ) e(t) e(t)
- 子载波频率:子载波频率 f k = n / T B ( n = 0 , 1 , ⋯ , N − 1 ) f_k=n / T_{\mathrm{B}}(n=0,1, \cdots, N-1) fk=n/TB(n=0,1,⋯,N−1) 。在 OFDM 系统中,子载波是承载信息的关键元素。这个公式表明子载波频率是等间隔分布的,间隔为 1 / T B 1 / T_{\mathrm{B}} 1/TB【 T B T_{\mathrm{B}} TB是并行码元的持续时间】 。从物理意义上讲,不同的子载波频率使得各个子载波能够在频域上相互正交,从而在相同的时间和带宽资源下,实现多个子载波同时传输不同信息,提高了频谱利用率。
上变频:由于实际通信中信号需要在特定高频频段传输,后续会用上变频将OFDM信号频谱搬移到指定高频为止
相关文章:
OFDM系统仿真
1️⃣ OFDM的原理 1.1 介绍 OFDM是一种多载波调制技术,将输入数据分配到多个子载波上,每个子载波上可以独立使用 QAM、PSK 等传统调制技术进行调制。这些子载波之间互相正交,从而可以有效利用频谱并减少干扰。 1.2 OFDM的核心 多载波调制…...
基于单片机的盲人智能水杯系统(论文+源码)
1 总体方案设计 本次基于单片机的盲人智能水杯设计,采用的是DS18B20实现杯中水温的检测,采用HX711及应力片实现杯中水里的检测,采用DS1302实现时钟计时功能,采用TTS语音模块实现语音播报的功能,并结合STC89C52单片机作…...
安心即美的生活方式
如果你的心是安定的,那么,外界也就安静了。就像陶渊明说的:心远地自偏。不是走到偏远无人的边荒才能得到片刻清净,不需要使用洪荒之力去挣脱生活的枷锁,这是陶渊明式的中国知识分子的雅量。如果你自己是好的男人或女人…...
安卓(android)订餐菜单【Android移动开发基础案例教程(第2版)黑马程序员】
一、实验目的(如果代码有错漏,可查看源码) 1.掌握Activity生命周的每个方法。 2.掌握Activity的创建、配置、启动和关闭。 3.掌握Intent和IntentFilter的使用。 4.掌握Activity之间的跳转方式、任务栈和四种启动模式。 5.掌握在Activity中添加…...
【cocos creator】【模拟经营】餐厅经营demo
下载:【cocos creator】模拟经营餐厅经营...
前端 | 深入理解Promise
1. 引言 JavaScript 是一种单线程语言,这意味着它一次仅能执行一个任务。为了处理异步操作,JavaScript 提供了回调函数,但是随着项目处理并发任务的增加,回调地狱 (Callback Hell) 使异步代码很难维护。为此,ES6带来了…...
Visual Studio Code修改terminal字体
个人博客地址:Visual Studio Code修改terminal字体 | 一张假钞的真实世界 默认打开中断后字体显示如下: 打开设置,搜索配置项terminal.integrated.fontFamily,修改配置为monospace。修改后效果如下:...
自然语言处理-词嵌入 (Word Embeddings)
人工智能例子汇总:AI常见的算法和例子-CSDN博客 词嵌入(Word Embedding)是一种将单词或短语映射到高维向量空间的技术,使其能够以数学方式表示单词之间的关系。词嵌入能够捕捉语义信息,使得相似的词在向量空间中具有…...
自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
import numpy as np import torch import torch.nn as nn import torch.optim as optim from sklearn.metrics import precision_score, recall_score, f1_score# 数据准备 class1_points np.array([[1.9, 1.2],[1.5, 2.1],[1.9, 0.5],[1.5, 0.9],[0.9, 1.2],[1.1, 1.7],[1.4,…...
【论文笔记】Fast3R:前向并行muti-view重建方法
众所周知,DUSt3R只适合做稀疏视角重建,与sapnn3r的目的类似,这篇文章以并行的方法,扩展了DUSt3R在多视图重建中的能力。 abstract 多视角三维重建仍然是计算机视觉领域的核心挑战,尤其是在需要跨不同视角实现精确且可…...
谈谈你所了解的AR技术吧!
深入探讨 AR 技术的原理与应用 在科技飞速发展的今天,AR(增强现实)技术已经悄然改变了我们与周围世界互动的方式。你是否曾想象过如何能够通过手机屏幕与虚拟物体进行实时互动?在这篇文章中,我们将深入探讨AR技术的原…...
upload labs靶场
upload labs靶场 注意:本人关卡后面似乎相比正常的关卡少了一关,所以每次关卡名字都是1才可以和正常关卡在同一关 一.个人信息 个人名称:张嘉玮 二.解题情况 三.解题过程 题目:up load labs靶场 pass 1前后端 思路及解题:…...
搜索引擎友好:设计快速收录的网站架构
本文来自:百万收录网 原文链接:https://www.baiwanshoulu.com/14.html 为了设计一个搜索引擎友好的网站架构,以实现快速收录,可以从以下几个方面入手: 一、清晰的目录结构与层级 合理划分内容:目录结构应…...
基于 oneM2M 标准的空气质量监测系统的互操作性
论文标题 英文标题: Interoperability of Air Quality Monitoring Systems through the oneM2M Standard 中文标题: 基于 oneM2M 标准的空气质量监测系统的互操作性 作者信息 Jonnar Danielle Diosana, Gabriel Angelo Limlingan, Danielle Bryan Sor…...
春晚舞台上的人形机器人:科技与文化的奇妙融合
文章目录 人形机器人Unitree H1的“硬核”实力传统文化与现代科技的创新融合网友热议与文化共鸣未来展望:科技与文化的更多可能结语 2025 年央视春晚的舞台,无疑是全球华人目光聚焦的焦点。就在这个盛大的舞台上,一场名为《秧BOT》的创意融合…...
零基础学习书生.浦语大模型-入门岛
第一关:Linux基础知识 Cursor连接服务器 使用Remote - SSH插件即可 注:46561:服务器端口号 运行指令 python hello_world.py端口映射 ssh -p 46561 rootssh.intern-ai.org.cn -CNg -L 7860:127.0.0.1:7860 -o StrictHostKeyCheckingno …...
Gurobi基础语法之 addConstr, addConstrs, addQConstr, addMQConstr
在新版本的 Gurobi 中,向 addConstr 这个方法中传入一个 TempConstr 对象,在模型中就会根据这个对象生成一个约束。更重要的是:TempConstr 对象可以传给所有addConstr系列方法,所以下面先介绍 TempConstr 对象 TempConstr TempC…...
数据结构---图的遍历
图的遍历(Travering Graph):从图的某一顶点出发,访遍图中的其余顶点,且每个顶点仅被访问一次,图的遍历算法是各种图的操作的基础。 复杂性:图的任意顶点可能和其余的顶点相邻接,可能在访问了某个顶点后,沿某条路径搜索…...
Qwen 模型自动构建知识图谱,生成病例 + 评价指标优化策略
关于数据库和检索方式的选择 AI Medical Consultant for Visual Question Answering (VQA) 系统:更适合在前端使用向量数据库(如FAISS)结合关系型数据库来实现图像和文本的检索与存储。因为在 VQA 场景中,你需要对患者上传的图像或…...
.Net Web API 访问权限限定
看到一个代码是这样的: c# webapi 上 [Route("api/admin/file-service"), AuthorizeAdmin] AuthorizeAdmin 的定义是这样的 public class AuthorizeAdminAttribute : AuthorizeAttribute {public AuthorizeAdminAttribute(){Roles "admin"…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
