OFDM系统仿真
1️⃣ OFDM的原理
1.1 介绍
OFDM是一种多载波调制技术,将输入数据分配到多个子载波上,每个子载波上可以独立使用 QAM、PSK 等传统调制技术进行调制。这些子载波之间互相正交,从而可以有效利用频谱并减少干扰。
1.2 OFDM的核心
- 多载波调制
高速数据流被拆分成多个并行的低速数据流,每个低速数据流被分配到正交的子载波上 - 子载波正交性
子载波的正交性是OFDM的核心,正交性保证了不同子载波之间不会相互干扰 - 使用FFT/IFFT的实现
OFDM使用IFFT生成正交的子载波信号,而在接收端通过FFT恢复频域信号
1.3 OFDM系统架构
以MQAM调制为例,假设OFDM系统的输入信号是串行的二进制码元,每个二进制码元的持续时间为 T b T_\mathrm{b} Tb。
分帧:首先,将输入信号分帧
,每一帧包含F个二进制码元,即包含F比特。
分组:然后针对每一帧来说,每帧都会再进一步分组
,即把F个二进制码元分成N组,每组中的比特数可以不同。例如,第 i i i组包含的比特数是 b i b_i bi。
码元转换:将每组中的 b i b_i bi个比特看作一个 M i M_i Mi进制的码元 B i B_i Bi, b i b_i bi与 M i M_i Mi的关系是 b i = l o g 2 M i b_i=log_2M_i bi=log2Mi
串并转换:此步骤将串行的N个码元 B i B_i Bi变成N路并行码元 B i B_i Bi。并行码元的持续时间相同,都是 T B = F ⋅ T b T_B=F·T_b TB=F⋅Tb
映射:在MQAM调制中,一个并行码元 B i B_i Bi可以用平面上的一个点表示,将 M i M_i Mi进制的码元 B i B_i Bi变成一一对应的复数 B i \boldsymbol{B_i} Bi的过程称为映射过程。例如 B i B_i Bi包含4bit “1100”,那就是16进制码元,进行的是16QAM调制,假设星座图如下图所示,则其相位为45°,振幅为 A / 2 A/\sqrt{2} A/2。此映射过程将“1100”映射为复数形式 B i = ( A / 2 ) e j π / 4 \boldsymbol{B_i}=(A/\sqrt{2})e^{j\pi/4} Bi=(A/2)ejπ/4
调制:N路并行码元 B i B_i Bi对N个子载波进行不同的MQAM调制。由于各个并行码元 B i B_i Bi包含比特数不同,所以调制方式不同,举个例子,若并行码元 B i B_i Bi包含4bit,那就是16QAM调制;包含8bit就是64QAM调制
IDFT:使用IDFT实现正交频分复用
-
最低子载波频率设定:为了用IDFT实现OFDM,先将OFDM的最低子载波频率设定为0。这是为了满足IDFT公式: s ( k ) = 1 K ∑ n = 0 K − 1 S ( n ) e j ( 2 π / K ) n k , k = 0 , 1 , 2 , ⋯ , K − 1 s(k)=\frac{1}{\sqrt{K}} \sum_{n=0}^{K-1} \boldsymbol{S}(n) \mathrm{e}^{\mathrm{j}(2 \pi / K) n k} \quad ,k=0,1,2, \cdots, K-1 s(k)=K1n=0∑K−1S(n)ej(2π/K)nk,k=0,1,2,⋯,K−1在n=0时,其右端第一项的指数因子等于1的条件,方便后续数学运算和信号处理。
-
IDFT项数设定与等效复码元序列生成:假设IDFT的项数为K,设置K=2N,即IDFT的项数等于子信道数目N的2倍。根据下述共轭对称性条件:
若信号的时域函数 s ( k ) s(k) s(k) 是实函数,则其 K K K 点 DFT 的值 S ( n ) \boldsymbol{S}(n) S(n) 一定满足对称性条件: S ( K − k ) = S ∗ ( k ) k = 0 , 1 , 2 , ⋯ , K − 1 \boldsymbol{S}(K-k)=\boldsymbol{S}^*(k) \quad k=0,1,2, \cdots, K-1 S(K−k)=S∗(k)k=0,1,2,⋯,K−1式中: S ∗ ( k ) \boldsymbol{S}^*(k) S∗(k) 为 S ( k ) \boldsymbol{S}(k) S(k) 的复共轭。
从N个并行复数码元序列 { B i } \left\{\boldsymbol{B_i}\right\} {Bi}( i = 0 , 1 , ⋯ , N − 1 ) i=0,1, \cdots, N-1) i=0,1,⋯,N−1) 生成 K = 2 N K=2 N K=2N 【将 IDFT 项数设为2N】个等效复数码元序列 { B n ′ } ( \left\{\boldsymbol{B_n}^{\prime}\right\}( {Bn′}( n = 0 , 1 , ⋯ , 2 N − 1 ) n=0,1, \cdots, 2 N-1) n=0,1,⋯,2N−1),具体规则如下:
① 当 n = 1 , 2 , ⋯ , N − 1 n=1,2, \cdots, N-1 n=1,2,⋯,N−1 时, B K − n − 1 ′ = B n ∗ ( B n ∗ \boldsymbol{B}_{K-n-1}^{\prime}=\boldsymbol{B}_n^* \quad\left(B_n^*\right. BK−n−1′=Bn∗(Bn∗ 为 B n B_n Bn 的共轭复数)。
② 当 n = N , N + 1 , ⋯ , 2 N − 2 n=N, N+1, \cdots, 2 N-2 n=N,N+1,⋯,2N−2 时, B K − n − 1 ′ = B K − n − 1 \boldsymbol{B}_{K-n-1}^{\prime}=\boldsymbol{B}_{K-n-1} BK−n−1′=BK−n−1 。
③ B 0 ′ = Re ( B 0 ) \boldsymbol{B}_0^{\prime}=\operatorname{Re}\left(B_0\right) B0′=Re(B0) ,即取 B 0 \boldsymbol{B}_0 B0 的实部。
④ B K − 1 ′ = B 2 N − 1 ′ = Im ( B 0 ) \boldsymbol{B}_{K-1}^{\prime}=\boldsymbol{B}_{2 N-1}^{\prime}=\operatorname{Im}\left(\boldsymbol{B}_0\right) BK−1′=B2N−1′=Im(B0) ,即取 B 0 \boldsymbol{B}_0 B0 的虚部。补充:为什么一定要K=2N?
OFDM 系统最终需要生成实值的时域信号进行传输(实信号在实际硬件中更易处理和传输)。IDFT 具有这样的特性:当频域序列满足一定的共轭对称性质时,经过 IDFT 变换后得到的时域序列是实值的。通过将 IDFT 项数设为 2 N 2 N 2N ,可以利用这一性质,通过对 N N N 个并行复数码元序列构建出具有共轭对称性质的 2 N 2 N 2N 个等效复数码元序列(如前面提到的通过特定的对称规则生成),从而确保经过 IDFT 后得到实值的时域信号。 -
OFDM信号的离散形式:将生成的新码元序列 { B n ′ } \left\{\boldsymbol{B}_n^{\prime}\right\} {Bn′} 作为频域信号代入IDFT公式,得到时域离散信号:
e ( k ) = 1 K ∑ n = 0 K − 1 B n ′ e j ( 2 π / K ) n k ( k = 0 , 1 , ⋯ , K − 1 ) e(k)=\frac{1}{\sqrt{K}} \sum_{n=0}^{K-1} \boldsymbol{B}_n^{\prime} \mathrm{e}^{\mathrm{j}(2 \pi / K) n k} \quad(k=0,1, \cdots, K-1) e(k)=K1n=0∑K−1Bn′ej(2π/K)nk(k=0,1,⋯,K−1)
这里的 e ( k ) e(k) e(k) 是离散的,且 e ( k ) = e ( k T B / K ) e(k)=e\left(k T_{\mathrm{B}} / K\right) e(k)=e(kTB/K),即在离散的时间点 k T B / K k T_{\mathrm{B}} / K kTB/K 上对连续的 OFDM 信号 e ( t ) e(t) e(t) 进行抽样得到了 e ( k ) e(k) e(k)
循环前缀:对每个 OFDM 符号添加循环前缀,以对抗多径效应等引起的干扰,它是在时域上操作的【OFDM信号长啥样??? 例如,50个OFDM符号,每个符号64个子载波,那矩阵大小就是64×50,加8个循环前缀的话,就会变成72×50】
并串转换:此时的信号 e ( k ) e(k) e(k) 在时域上还是以并行的形式存在,为了后续能够进行 D/A 转换以及在实际信道中传输【因为D/A 转换器通常接收串行的信号】,需要将这些并行的离散信号进行并串转换,将其变为串行的离散信号序列
通过D/A转换得到连续形式:离散抽样信号 e ( k ) e(k) e(k)经过数模(D/A)转换后就得到OFDM 信号的连续时间表达式:
e ( t ) = 1 K ∑ n = 0 K − 1 B n ′ e j ( 2 π / T B ) n t ( 0 ⩽ t ⩽ T B ) e(t)=\frac{1}{\sqrt{K}} \sum_{n=0}^{K-1} \boldsymbol{B}_n^{\prime} \mathrm{e}^{\mathrm{j}\left(2 \pi / T_{\mathrm{B}}\right) n t} \quad\left(0 \leqslant t \leqslant T_{\mathrm{B}}\right) e(t)=K1n=0∑K−1Bn′ej(2π/TB)nt(0⩽t⩽TB)
它是从离散抽样信号 e ( k ) e(k) e(k) 推导而来的,体现了 OFDM 信号在整个时间区间 [ 0 , T B ] \left[0, T_{\mathrm{B}}\right] [0,TB] 上的连续变化情况。在这个表达式中,每一项 B n ′ e j ( 2 π / T B ) n t \boldsymbol{B}_n^{\prime} \mathrm{e}^{\mathrm{j}\left(2 \pi / T_{\mathrm{B}}\right) n t} Bn′ej(2π/TB)nt 都代表一个子载波信号,不同的 n n n 对应不同的子载波,通过对这些子载波信号进行叠加,就得到了完整的 OFDM 信号 e ( t ) e(t) e(t)
- 子载波频率:子载波频率 f k = n / T B ( n = 0 , 1 , ⋯ , N − 1 ) f_k=n / T_{\mathrm{B}}(n=0,1, \cdots, N-1) fk=n/TB(n=0,1,⋯,N−1) 。在 OFDM 系统中,子载波是承载信息的关键元素。这个公式表明子载波频率是等间隔分布的,间隔为 1 / T B 1 / T_{\mathrm{B}} 1/TB【 T B T_{\mathrm{B}} TB是并行码元的持续时间】 。从物理意义上讲,不同的子载波频率使得各个子载波能够在频域上相互正交,从而在相同的时间和带宽资源下,实现多个子载波同时传输不同信息,提高了频谱利用率。
上变频:由于实际通信中信号需要在特定高频频段传输,后续会用上变频
将OFDM信号频谱搬移到指定高频为止
相关文章:

OFDM系统仿真
1️⃣ OFDM的原理 1.1 介绍 OFDM是一种多载波调制技术,将输入数据分配到多个子载波上,每个子载波上可以独立使用 QAM、PSK 等传统调制技术进行调制。这些子载波之间互相正交,从而可以有效利用频谱并减少干扰。 1.2 OFDM的核心 多载波调制…...

基于单片机的盲人智能水杯系统(论文+源码)
1 总体方案设计 本次基于单片机的盲人智能水杯设计,采用的是DS18B20实现杯中水温的检测,采用HX711及应力片实现杯中水里的检测,采用DS1302实现时钟计时功能,采用TTS语音模块实现语音播报的功能,并结合STC89C52单片机作…...
安心即美的生活方式
如果你的心是安定的,那么,外界也就安静了。就像陶渊明说的:心远地自偏。不是走到偏远无人的边荒才能得到片刻清净,不需要使用洪荒之力去挣脱生活的枷锁,这是陶渊明式的中国知识分子的雅量。如果你自己是好的男人或女人…...

安卓(android)订餐菜单【Android移动开发基础案例教程(第2版)黑马程序员】
一、实验目的(如果代码有错漏,可查看源码) 1.掌握Activity生命周的每个方法。 2.掌握Activity的创建、配置、启动和关闭。 3.掌握Intent和IntentFilter的使用。 4.掌握Activity之间的跳转方式、任务栈和四种启动模式。 5.掌握在Activity中添加…...

【cocos creator】【模拟经营】餐厅经营demo
下载:【cocos creator】模拟经营餐厅经营...

前端 | 深入理解Promise
1. 引言 JavaScript 是一种单线程语言,这意味着它一次仅能执行一个任务。为了处理异步操作,JavaScript 提供了回调函数,但是随着项目处理并发任务的增加,回调地狱 (Callback Hell) 使异步代码很难维护。为此,ES6带来了…...

Visual Studio Code修改terminal字体
个人博客地址:Visual Studio Code修改terminal字体 | 一张假钞的真实世界 默认打开中断后字体显示如下: 打开设置,搜索配置项terminal.integrated.fontFamily,修改配置为monospace。修改后效果如下:...
自然语言处理-词嵌入 (Word Embeddings)
人工智能例子汇总:AI常见的算法和例子-CSDN博客 词嵌入(Word Embedding)是一种将单词或短语映射到高维向量空间的技术,使其能够以数学方式表示单词之间的关系。词嵌入能够捕捉语义信息,使得相似的词在向量空间中具有…...

自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
import numpy as np import torch import torch.nn as nn import torch.optim as optim from sklearn.metrics import precision_score, recall_score, f1_score# 数据准备 class1_points np.array([[1.9, 1.2],[1.5, 2.1],[1.9, 0.5],[1.5, 0.9],[0.9, 1.2],[1.1, 1.7],[1.4,…...

【论文笔记】Fast3R:前向并行muti-view重建方法
众所周知,DUSt3R只适合做稀疏视角重建,与sapnn3r的目的类似,这篇文章以并行的方法,扩展了DUSt3R在多视图重建中的能力。 abstract 多视角三维重建仍然是计算机视觉领域的核心挑战,尤其是在需要跨不同视角实现精确且可…...
谈谈你所了解的AR技术吧!
深入探讨 AR 技术的原理与应用 在科技飞速发展的今天,AR(增强现实)技术已经悄然改变了我们与周围世界互动的方式。你是否曾想象过如何能够通过手机屏幕与虚拟物体进行实时互动?在这篇文章中,我们将深入探讨AR技术的原…...

upload labs靶场
upload labs靶场 注意:本人关卡后面似乎相比正常的关卡少了一关,所以每次关卡名字都是1才可以和正常关卡在同一关 一.个人信息 个人名称:张嘉玮 二.解题情况 三.解题过程 题目:up load labs靶场 pass 1前后端 思路及解题:…...
搜索引擎友好:设计快速收录的网站架构
本文来自:百万收录网 原文链接:https://www.baiwanshoulu.com/14.html 为了设计一个搜索引擎友好的网站架构,以实现快速收录,可以从以下几个方面入手: 一、清晰的目录结构与层级 合理划分内容:目录结构应…...

基于 oneM2M 标准的空气质量监测系统的互操作性
论文标题 英文标题: Interoperability of Air Quality Monitoring Systems through the oneM2M Standard 中文标题: 基于 oneM2M 标准的空气质量监测系统的互操作性 作者信息 Jonnar Danielle Diosana, Gabriel Angelo Limlingan, Danielle Bryan Sor…...

春晚舞台上的人形机器人:科技与文化的奇妙融合
文章目录 人形机器人Unitree H1的“硬核”实力传统文化与现代科技的创新融合网友热议与文化共鸣未来展望:科技与文化的更多可能结语 2025 年央视春晚的舞台,无疑是全球华人目光聚焦的焦点。就在这个盛大的舞台上,一场名为《秧BOT》的创意融合…...

零基础学习书生.浦语大模型-入门岛
第一关:Linux基础知识 Cursor连接服务器 使用Remote - SSH插件即可 注:46561:服务器端口号 运行指令 python hello_world.py端口映射 ssh -p 46561 rootssh.intern-ai.org.cn -CNg -L 7860:127.0.0.1:7860 -o StrictHostKeyCheckingno …...
Gurobi基础语法之 addConstr, addConstrs, addQConstr, addMQConstr
在新版本的 Gurobi 中,向 addConstr 这个方法中传入一个 TempConstr 对象,在模型中就会根据这个对象生成一个约束。更重要的是:TempConstr 对象可以传给所有addConstr系列方法,所以下面先介绍 TempConstr 对象 TempConstr TempC…...

数据结构---图的遍历
图的遍历(Travering Graph):从图的某一顶点出发,访遍图中的其余顶点,且每个顶点仅被访问一次,图的遍历算法是各种图的操作的基础。 复杂性:图的任意顶点可能和其余的顶点相邻接,可能在访问了某个顶点后,沿某条路径搜索…...
Qwen 模型自动构建知识图谱,生成病例 + 评价指标优化策略
关于数据库和检索方式的选择 AI Medical Consultant for Visual Question Answering (VQA) 系统:更适合在前端使用向量数据库(如FAISS)结合关系型数据库来实现图像和文本的检索与存储。因为在 VQA 场景中,你需要对患者上传的图像或…...
.Net Web API 访问权限限定
看到一个代码是这样的: c# webapi 上 [Route("api/admin/file-service"), AuthorizeAdmin] AuthorizeAdmin 的定义是这样的 public class AuthorizeAdminAttribute : AuthorizeAttribute {public AuthorizeAdminAttribute(){Roles "admin"…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...

css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...

莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...