刷题记录 HOT100回溯算法-6:79. 单词搜索
题目:79. 单词搜索
给定一个 m x n
二维字符网格 board
和一个字符串单词 word
。如果 word
存在于网格中,返回 true
;否则,返回 false
。
单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。
示例 1:
输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED" 输出:true
示例 2:
输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE" 输出:true
示例 3:
输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB" 输出:false
提示:
m == board.length
n = board[i].length
1 <= m, n <= 6
1 <= word.length <= 15
board
和word
仅由大小写英文字母组成
一、模式识别
1.棋盘格:回溯法
棋盘格问题,回溯法典型应用,用回溯算法
层间:word内顺序访问
层内:board遍历或上一个字母上下左右
无需找到所有结果,找到第一个结果后返回
2.搜索方式
1.word首字母在board中二维遍历
2.word内(层间)顺序访问,剩余字母分别搜索上一个字母的上下左右
3.访问过的字母不可以重复访问
二.代码实现
1.基础实现
class Solution:def get_candidate(self, board, visited, i, j):candidate = []if i - 1 >= 0 and not visited[i - 1][j]:candidate.append((board[i - 1][j], i - 1, j))if j - 1 >= 0 and not visited[i][j - 1]:candidate.append((board[i][j - 1], i, j - 1))if i + 1 < len(board) and not visited[i + 1][j]:candidate.append((board[i + 1][j], i + 1, j))if j + 1 < len(board[0]) and not visited[i][j + 1]:candidate.append((board[i][j + 1], i, j + 1))return candidatedef backtracking(self, board, word, visited, start_idx, i, j):if start_idx == len(word):return Trueif start_idx == 0:for i in range(len(board)):for j in range(len(board[i])):if board[i][j] == word[0]:visited[i][j] = Trueif self.backtracking(board, word, visited, 1, i, j):return Truevisited[i][j] = Falseelse:for ch, a, b in self.get_candidate(board, visited, i, j):if ch == word[start_idx]:visited[a][b] = Trueif self.backtracking(board, word, visited, start_idx + 1, a, b):return Truevisited[a][b] = Falsereturn Falsedef exist(self, board: List[List[str]], word: str) -> bool:visited = [[False] * len(board[0]) for _ in range(len(board))]return self.backtracking(board, word, visited, 0, -1, -1)
start_idx记录访问顺序
visited用于标记访问过的字母
首字母二维遍历board
剩余字母层间顺序访问,层内访问上一个字母在board中的上下左右
耗时:2000ms-4000ms
2.启发式搜索
class Solution:def get_candidate(self, board, i, j):candidate = []if i - 1 >= 0 and board[i - 1][j]:candidate.append((board[i - 1][j], i - 1, j))if j - 1 >= 0 and board[i][j - 1]:candidate.append((board[i][j - 1], i, j - 1))if i + 1 < len(board) and board[i + 1][j]:candidate.append((board[i + 1][j], i + 1, j))if j + 1 < len(board[0]) and board[i][j + 1]:candidate.append((board[i][j + 1], i, j + 1))return candidatedef backtracking(self, board, word, start_idx, i, j):if start_idx == len(word):return Trueif start_idx == 0:for i in range(len(board)):for j in range(len(board[i])):if board[i][j] == word[0]:board[i][j] = Falseif self.backtracking(board, word, 1, i, j):return Trueboard[i][j] = word[0]else:for ch, a, b in self.get_candidate(board, i, j):if ch == word[start_idx]:board[a][b] = Falseif self.backtracking(board, word, start_idx + 1, a, b):return Trueboard[a][b] = word[start_idx]return Falsedef exist(self, board: List[List[str]], word: str) -> bool:# visited = [[False] * len(board[0]) for _ in range(len(board))]cnt=Counter(c for row in board for c in row)if not cnt>=Counter(word):return Falseif cnt[word[-1]]<cnt[word[0]]:word=word[::-1]return self.backtracking(board, word, 0, -1, -1)
在提交排行榜中看到的启发式搜索
思路:主要搜索开销都在第一步的board的遍历,于是从第一步开刀
实现逻辑:如果尾端字母在board出现频率低于首端则word反序
计算开销直接降到0ms-3ms
相关文章:

刷题记录 HOT100回溯算法-6:79. 单词搜索
题目:79. 单词搜索 给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ;否则,返回 false 。 单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻…...
JavaScript系列(52)--编译优化技术详解
JavaScript编译优化技术详解 🚀 今天,让我们深入探讨JavaScript的编译优化技术。通过理解和应用这些技术,我们可以显著提升JavaScript代码的执行效率。 编译优化基础概念 🌟 💡 小知识:JavaScript引擎通常…...

Ollama+DeepSeek本地大模型部署
1、Ollama 官网:https://ollama.com/ Ollama可以干什么? 可以快速在本地部署和管理各种大语言模型,操作命令和dokcer类似。 mac安装ollama: # 安装ollama brew install ollama# 启动ollama服务(默认11434端口…...
在 WSL2 中重启 Ubuntu 实例
在 WSL2 中重启 Ubuntu 实例,可以按照以下步骤操作: 方法 1: 使用 wsl 命令 关闭 Ubuntu 实例: 打开 PowerShell 或命令提示符,运行以下命令: wsl --shutdown这会关闭所有 WSL2 实例。 重新启动 Ubuntu: 再次打开 Ubuntu&#x…...

【ts + java】古玩系统开发总结
src别名的配置 开发中文件和文件的关系会比较复杂,我们需要给src文件夹一个别名吧 vite.config.js import { defineConfig } from vite import vue from vitejs/plugin-vue import path from path// https://vitejs.dev/config/ export default defineConfig({pl…...

机器学习周报-文献阅读
文章目录 摘要Abstract 1 相关知识1.1 WDN建模1.2 掩码操作(Masking Operation) 2 论文内容2.1 WDN信息的数据处理2.2 使用所收集的数据构造模型2.2.1 Gated graph neural network2.2.2 Masking operation2.2.3 Training loss2.2.4 Evaluation metrics 2…...

LabVIEW微位移平台位移控制系统
本文介绍了基于LabVIEW的微位移平台位移控制系统的研究。通过设计一个闭环控制系统,针对微位移平台的通信驱动问题进行了解决,并提出了一种LabVIEW的应用方案,用于监控和控制微位移平台的位移,从而提高系统的精度和稳定性。 项目背…...

fpga系列 HDL:XILINX Vivado ILA FPGA 在线逻辑分析
ILA为内置逻辑分析仪,通过JTAG与FPGA连接,程序在真实硬件中运行,功能类似Quaruts的SignalTap II 。 ip创建ila 使用ila ip核 timescale 1ns / 1ps module HLSLED(input wire clk ,input wire rst_n ,output wire led);// reg led_o_i 1…...
刷题记录 贪心算法-2:455. 分发饼干
题目:455. 分发饼干 难度:简单 假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。 对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸&a…...

Android --- CameraX讲解
预备知识 surface surfaceView SurfaceHolder surface 是什么? 一句话来说: surface是一块用于填充图像数据的内存。 surfaceView 是什么? 它是一个显示surface 的View。 在app中仍在 ViewHierachy 中,但在wms 中可以理解为…...
ElasticSearch view
基础知识类 elasticsearch和数据库之间区别? elasticsearch:面向文档,数据以文档的形式存储,即JSON格式的对象。更强调数据的搜索、索引和分析。 数据库:更侧重于事务处理、数据的严格结构化和完整性,适用于…...

list的使用,及部分功能的模拟实现(C++)
目录(文章中"节点"和"结点"是同一个意思) 1. list的介绍及使用 1.1 list的介绍 1.2 list的使用 1.2.1 list的构造 1.2.2 list iterator的使用 1.2.3 list capacity 1.2.4 list element access 1.2.5 list modifiers 1.2.6 list…...

联想Y7000+RTX4060+i7+Ubuntu22.04运行DeepSeek开源多模态大模型Janus-Pro-1B+本地部署
直接上手搓了: conda create -n myenv python3.10 -ygit clone https://github.com/deepseek-ai/Janus.gitcd Januspip install -e .pip install webencodings beautifulsoup4 tinycss2pip install -e .[gradio]pip install pexpect>4.3python demo/app_januspr…...

[Spring] Gateway详解
🌸个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 🏵️热门专栏: 🧊 Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 🍕 Collection与…...

音叉模态分析
目录 0 序言 1 自由状态下模态求解 1.1 添加模态项目 1.2 生成网格 1.3 设置最大模态阶数 1.4 求解 1.5 结果查看 1.6 结果分析 2 音叉能否释放频率440Hz的音调 3 预应力模态求解 3.1 静态结构分析 3.1.1 添加静态结构项目 3.1.2生成网格 3.1.3添加边界条件 3.1…...

BW AO/工作簿权限配置
场景: 按事业部配置工作簿权限; 1、创建用户 事务码:SU01,用户主数据的维护,可以创建、修改、删除、锁定、解锁、修改密码等 用户设置详情页 2、创建权限角色 用户的权限菜单是通过权限角色分配来实现的 2.1、自定…...

C++ 字母大小写转换两种方法统计数字字符的个数
目录 题目: 代码1: 代码2: 题目描述输入一行字符,统计出其中数字字符的个数。 代码如下: 判断⼀个字符是否是数字字符有⼀个函数是 isdigit ,可以直接使⽤。 代码如下: 题目: 大家都知道…...

如何使用 ChatBox AI 简化本地模型对话操作
部署模型请看上一篇帖子:本地部署DeepSeek教程(Mac版本)-CSDN博客 使用 ChatBox AI 简化本地模型对话操作: 打开 ChatBox AI 官网:Chatbox AI官网:办公学习的AI好助手,全平台AI客户端…...
前端面试笔试题目(一)
以下模拟了大厂前端面试流程,并给出了涵盖HTML、CSS、JavaScript等基础和进阶知识的前端笔试题目,以帮助你更好地准备面试。 面试流程模拟 1. 自我介绍(5 - 10分钟):面试官会请你进行简单的自我介绍,包括…...
Docker Hello World
Docker Hello World 引言 Docker 是一个开源的应用容器引擎,可以让开发者打包他们的应用以及应用的依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。本文将带领您从零开始,学习如何使用 Docker 运行一个简单的 "Hello World"…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...

代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

沙箱虚拟化技术虚拟机容器之间的关系详解
问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西,但是如果把三者放在一起,它们之间到底什么关系?又有什么联系呢?我不是很明白!!! 就比如说: 沙箱&#…...

2025-05-08-deepseek本地化部署
title: 2025-05-08-deepseek 本地化部署 tags: 深度学习 程序开发 2025-05-08-deepseek 本地化部署 参考博客 本地部署 DeepSeek:小白也能轻松搞定! 如何给本地部署的 DeepSeek 投喂数据,让他更懂你 [实验目的]:理解系统架构与原…...
python打卡第47天
昨天代码中注意力热图的部分顺移至今天 知识点回顾: 热力图 作业:对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图,展示模…...
起重机起升机构的安全装置有哪些?
起重机起升机构的安全装置是保障吊装作业安全的关键部件,主要用于防止超载、失控、断绳等危险情况。以下是常见的安全装置及其功能和原理: 一、超载保护装置(核心安全装置) 1. 起重量限制器 功能:实时监测起升载荷&a…...

【Java多线程从青铜到王者】单例设计模式(八)
wait和sleep的区别 我们的wait也是提供了一个还有超时时间的版本,sleep也是可以指定时间的,也就是说时间一到就会解除阻塞,继续执行 wait和sleep都能被提前唤醒(虽然时间还没有到也可以提前唤醒),wait能被notify提前唤醒…...