当前位置: 首页 > news >正文

Unet 改进:在encoder和decoder间加入TransformerBlock

目录

1. TransformerBlock

2. Unet 改进

3. 完整代码


Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可

1. TransformerBlock

TransformerBlock是Transformer模型架构的基本组件,广泛应用于机器翻译、文本摘要和情感分析等自然语言处理任务。

TransformerBlock是一个由两个子组件组成的构建块:多头注意力机制和前馈神经网络。这两个组件协同工作,处理和转换输入序列。

多头注意力机制

相关文章:

Unet 改进:在encoder和decoder间加入TransformerBlock

目录 1. TransformerBlock 2. Unet 改进 3. 完整代码 Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可 1. TransformerBlock TransformerBlock是Transformer模型架构的基本组件,广泛应用于机器翻译、文本摘要和情感分析等自然语言处理任务…...

work-stealing算法 ForkJoinPool

专栏系列文章地址:https://blog.csdn.net/qq_26437925/article/details/145290162 本文目标: 重点是通过例子程序理解work-stealing算法原理 目录 work-stealing算法算法原理和优缺点介绍使用场景work-stealing例子代码 ForkJoinPoolnew ForkJoinPool(…...

DeepSeek Janus-Pro:多模态AI模型的突破与创新

近年来,人工智能领域取得了显著的进展,尤其是在多模态模型(Multimodal Models)方面。多模态模型能够同时处理和理解文本、图像等多种类型的数据,极大地扩展了AI的应用场景。DeepSeek(DeepSeek-V3 深度剖析:…...

STM32-时钟树

STM32-时钟树 时钟 时钟...

hot100_21. 合并两个有序链表

将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1: 输入:l1 [1,2,4], l2 [1,3,4] 输出:[1,1,2,3,4,4] 示例 2: 输入:l1 [], l2 [] 输出:[…...

代码讲解系列-CV(一)——CV基础框架

文章目录 一、环境配置IDE选择一套完整复现安装自定义cuda算子 二、Linux基础文件和目录操作查看显卡状态压缩和解压 三、常用工具和pipeline远程文件工具版本管理代码辅助工具 随手记录下一个晚课 一、环境配置 pytorch是AI框架用的很多,或者 其他是国内的框架 an…...

C++ Primer 标准库类型string

欢迎阅读我的 【CPrimer】专栏 专栏简介:本专栏主要面向C初学者,解释C的一些基本概念和基础语言特性,涉及C标准库的用法,面向对象特性,泛型特性高级用法。通过使用标准库中定义的抽象设施,使你更加适应高级…...

计算机网络安全与运维的关键 —— 常用端口全解析

目录 前言 常见端口分类及用途 20 端口(FTP 数据传输) 21 端口(FTP 消息控制) 22 端口(SSH) 23 端口(Telnet) 25 端口(SMTP) 53 端口(DNS&…...

Vue.js 的介绍与组件开发初步

Vue.js 的介绍与组件开发初步 Vue.js 的介绍与组件开发初步引言第一部分:Vue.js 基础入门1.1 什么是 Vue.js?1.2 搭建 Vue.js 开发环境安装 Node.js 和 npm安装 Vue CLI创建新项目运行示例 1.3 第一个 Vue.js 示例 第二部分:Vue.js 组件开发基…...

【仿12306项目】通过加“锁”,解决高并发抢票的超卖问题

文章目录 一. 测试工具二. 超卖现象演示三. 原因分析四. 解决办法方法一:加synchronized锁1. 单个服务节点情况2. 增加服务器节点,分布式环境synchronized失效演示 方法二:使用Redis分布式锁锁解决超卖问题1. 添加Redis分布式锁2. 结果 方法三…...

wow-agent---task4 MetaGPT初体验

先说坑: 1.使用git clone模式安装metagpt 2.模型尽量使用在线模型或本地高参数模型。 这里使用python3.10.11调试成功 一,安装 安装 | MetaGPT,参考这里的以开发模型进行安装 git clone https://github.com/geekan/MetaGPT.git cd /you…...

MVANet——小范围内捕捉高分辨率细节而在大范围内不损失精度的强大的背景消除模型

一、概述 前景提取(背景去除)是现代计算机视觉的关键挑战之一,在各种应用中的重要性与日俱增。在图像编辑和视频制作中有效地去除背景不仅能提高美学价值,还能提高工作流程的效率。在要求精确度的领域,如医学图像分析…...

94,【2】buuctf web [安洵杯 2019]easy_serialize_php

进入靶场 可以查看源代码 <?php // 从 GET 请求中获取名为 f 的参数值&#xff0c;并赋值给变量 $function // 符号用于抑制可能出现的错误信息 $function $_GET[f];// 定义一个名为 filter 的函数&#xff0c;用于过滤字符串中的敏感词汇 function filter($img) {// 定义…...

LabVIEW如何有效地进行数据采集?

数据采集&#xff08;DAQ&#xff09;是许多工程项目中的核心环节&#xff0c;无论是测试、监控还是控制系统&#xff0c;准确、高效的数据采集都是至关重要的。LabVIEW作为一个图形化编程环境&#xff0c;提供了丰富的功能来实现数据采集&#xff0c;确保数据的实时性与可靠性…...

6 [新一代Github投毒针对网络安全人员钓鱼]

0x01 前言 在Github上APT组织“海莲花”发布存在后门的提权BOF&#xff0c;通过该项目针对网络安全从业人员进行钓鱼。不过其实早在几年前就已经有人对Visual Studio项目恶意利用进行过研究&#xff0c;所以投毒的手法也不算是新的技术。但这次国内有大量的安全从业者转发该钓…...

《Origin画百图》之脊线图

1.数据准备&#xff1a;将数据设置为y 2.选择绘图>统计图>脊线图 3.生成基础图形&#xff0c;并不好看&#xff0c;接下来对图形属性进行设置 4.双击图形>选择图案>颜色选择按点>Y值 5.这里发现颜色有色阶&#xff0c;过度并不平滑&#xff0c;需要对色阶进行更…...

linux 函数 sem_init () 信号量、sem_destroy()

&#xff08;1&#xff09; &#xff08;2&#xff09; 代码举例&#xff1a; #include <stdio.h> #include <stdlib.h> #include <pthread.h> #include <semaphore.h> #include <unistd.h>sem_t semaphore;void* thread_function(void* arg) …...

Kafka架构

引言 Kafka 凭借其独树一帜的分区架构&#xff0c;在消息中间件领域展现出了卓越的性能表现。其分区架构不仅赋予了 Kafka 强大的并行计算能力&#xff0c;使其能够高效处理海量数据&#xff0c;还显著提升了系统的容灾能力&#xff0c;确保在复杂的运行环境中始终保持稳定可靠…...

刷题记录 动态规划-2: 509. 斐波那契数

题目&#xff1a;509. 斐波那契数 难度&#xff1a;简单 斐波那契数 &#xff08;通常用 F(n) 表示&#xff09;形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始&#xff0c;后面的每一项数字都是前面两项数字的和。也就是&#xff1a; F(0) 0&#xff0c;F(1) 1 F(n…...

RDP协议详解

以下内容包含对 RDP&#xff08;Remote Desktop Protocol&#xff0c;远程桌面协议&#xff09;及其开源实现 FreeRDP 的较为系统、深入的讲解&#xff0c;涵盖协议概要、历史沿革、核心原理、安全机制、安装与使用方法、扩展与未来发展趋势等方面&#xff0c; --- ## 一、引…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...