如何本地部署DeepSeek?DeepThink R1 本地部署全攻略:零基础小白指南。
🚀 离线运行 AI,免费使用 OpenAI 级别推理模型
本教程将手把手教你如何在本地部署 DeepThink R1 AI 模型,让你无需联网就能运行强大的 AI 推理任务。无论你是AI 新手还是资深开发者,都可以轻松上手!
📌 目录
-
DeepThink R1 介绍
-
安装 Ollama(AI 运行环境)
-
下载并安装 DeepThink R1 模型
-
在终端运行 DeepThink R1
-
使用 Chatbox 浏览器 UI 交互
-
创建你的专属 AI 伙伴
-
进阶玩法:离线 AI 编程、自动化工具
-
常见问题 & 故障排除
1️⃣ DeepThink R1 介绍
DeepThink R1 是一款本地可运行的大语言模型(LLM),在数学推理、代码生成等领域表现强大, 并且可以免费运行在你的电脑上,无需联网。
| 模型版本 | 参数量 | 最低显存需求 | 最低内存需求 |
|---|---|---|---|
| R1-3B | 3B | 4GB | 8GB |
| R1-7B | 7B | 8GB | 16GB |
| R1-14B | 14B | 16GB | 32GB |
📢 推荐配置
-
显卡:NVIDIA RTX 3060 及以上(>= 8GB VRAM)
-
CPU:AMD Ryzen 7 / Intel i7 及以上
-
内存:16GB 及以上
-
存储:至少 50GB 可用空间
✅ 支持系统
-
Windows(推荐使用 WSL2)
-
Mac(Apple Silicon 原生支持)
-
Linux(Ubuntu 20.04+)
2️⃣ 安装 Ollama(AI 运行环境)
Ollama 是一个轻量级的大语言模型管理工具,支持 Windows / Mac / Linux。
官网:https://ollama.com/
📥 下载 & 安装 Ollama
-
Windows(需要 WSL2 Ubuntu)
curl -fsSL https://ollama.com/install.sh | sh
-
Mac
brew install ollama
-
Linux
curl -fsSL https://ollama.com/install.sh | sh
安装成功后,输入以下命令查看版本号,确保安装成功:
ollama --version
3️⃣ 下载并安装 DeepThink R1 模型
DeepThink R1 需要手动下载并添加到 Ollama。
📥 下载 DeepThink R1
ollama pull deepthink:r1
官网:https://www.deepseek.com/
这个命令会自动下载模型,下载速度取决于网络情况。
下载完成后,运行以下命令查看所有可用模型:
ollama list
4️⃣ 在终端运行 DeepThink R1
当模型下载完成后,使用以下命令启动:
ollama run deepthink:r1
然后输入任何问题,比如:> 9.9 和 9.11 哪个更大?
DeepThink R1 会直接给出答案,并展示清晰的推理过程。
📌 退出模型
/bye
📌 查看本地所有 AI 模型
ollama list
5️⃣ 使用 Chatbox 浏览器 UI 交互
虽然终端可以运行 DeepThink R1,但使用 浏览器 UI 交互 会更方便。
📥 下载 Chatbox
-
访问 Chatbox 官网
-
下载安装适合你系统的版本(Windows / Mac / Linux)
⚙️ 配置 Chatbox
-
打开 Chatbox
-
进入“设置”
-
选择“模型”
-
选择 Ollama
-
确保连接到本地 Ollama
-
选择 deepthink:r1 并保存
6️⃣ 创建你的专属 AI 伙伴
DeepThink R1 允许你创建一个个性化 AI 助手。
📌 创建 AI 角色
-
在 Chatbox 进入“我的搭档”
-
点击“创建搭档”
-
设定 AI 的个性、专长
-
保存后,即可使用!
你可以设定:
-
专业 AI 教授
-
代码助理
-
私人顾问
-
本地离线编程助手
-
个人知识库 AI
7️⃣ 进阶玩法:离线 AI 编程、自动化工具
DeepThink R1 支持离线 AI 编程、自动化任务,你可以: ✅ 本地 AI 编程 ✅ 本地 AI 助手 ✅ AI 文档总结 ✅ 离线 GPT 类模型 ✅ 集成到 VSCode、Python 代码
import requestsresponse = requests.post("http://localhost:11434/api/generate",json={"model": "deepthink:r1", "prompt": "解释鲁迅为什么打周树人"}
)print(response.json())
8️⃣ 常见问题 & 故障排除
❌ Ollama 命令无法识别? ✅ 重新安装 Ollama:
curl -fsSL https://ollama.com/install.sh | sh
❌ DeepThink R1 下载速度慢? ✅ 直接从 Hugging Face 下载 .gguf 文件并手动加载
❌ Chatbox 无法连接 Ollama? ✅ 运行:
ollama serve
然后在 Chatbox 设置 http://localhost:11434
相关文章:
如何本地部署DeepSeek?DeepThink R1 本地部署全攻略:零基础小白指南。
🚀 离线运行 AI,免费使用 OpenAI 级别推理模型 本教程将手把手教你如何在本地部署 DeepThink R1 AI 模型,让你无需联网就能运行强大的 AI 推理任务。无论你是AI 新手还是资深开发者,都可以轻松上手! 📌 目录…...
陆游的《诗人苦学说》:从藻绘到“功夫在诗外”(中英双语)mastery lies beyond poetry
陆游的《诗人苦学说》:从藻绘到“功夫在诗外” 今天看万维钢的《万万没想到》一书,看到陆游的功夫在诗外的句子,特意去查找这首诗的原文。故而有此文。 我国学人还往往过分强调“功夫在诗外”这句陆游的名言,认为提升综合素质是一…...
Golang —协程池(panjf2000/ants/v2)
Golang —协程池(panjf2000/ants/v2) 1 ants1.1 基本信息1.2 ants 是如何运行的(流程图) 1 ants 1.1 基本信息 代码地址:github.com/panjf2000/ants/v2 介绍:ants是一个高性能的 goroutine 池,…...
在 crag 中用 LangGraph 进行评分知识精炼-下
在上一次给大家展示了基本的 Rag 检索过程,着重描述了增强检索中的知识精炼和补充检索,这些都是 crag 的一部分,这篇内容结合 langgraph 给大家展示通过检索增强生成(Retrieval-Augmented Generation, RAG)的工作流&am…...
基于springboot+vue的哈利波特书影音互动科普网站
开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…...
Cypher入门
文章目录 Cypher入门创建数据查询数据matchoptional matchwhere分页with 更新数据删除数据实例:好友推荐 Cypher入门 Cypher是Neo4j的查询语言。 创建数据 在Neo4j中使用create命令创建节点、关系、属性数据。 create (n {name:$value}) return n //创建节点&am…...
使用Z-score进行数据特征标准化
数据标准化是数据处理过程中非常重要的一步,尤其在构建机器学习模型时尤为关键。标准化的目的是将不同量纲的变量转换到相同的尺度,以避免由于量纲差异导致的模型偏差。Z-score标准化是一种常见且简单的标准化方法,它通过计算数据点与平均值的差异,并将其按标准差进行缩放,…...
初级数据结构:栈和队列
一、栈 (一)、栈的定义 栈是一种遵循后进先出(LIFO,Last In First Out)原则的数据结构。栈的主要操作包括入栈(Push)和出栈(Pop)。入栈操作是将元素添加到栈顶,这一过程中…...
【思维导图】java
学习计划:将目前已经学的知识点串成一个思维导图。在往后的学习过程中,不断往思维导图里补充,形成自己整个知识体系。对于思维导图里的每个技术知识,自己用简洁的话概括出来, 训练自己的表达能力。 面向对象三大特性 …...
Redis脑裂问题详解及解决方案
Redis是一种高性能的内存数据库,广泛应用于缓存、消息队列等场景。然而,在分布式Redis集群中,脑裂问题(Split-Brain)是一个需要特别关注的复杂问题。本文将详细介绍Redis脑裂问题的成因、影响及解决方案。 一、什么是…...
玩转大语言模型——配置图数据库Neo4j(含apoc插件)并导入GraphRAG生成的知识图谱
系列文章目录 玩转大语言模型——使用langchain和Ollama本地部署大语言模型 玩转大语言模型——ollama导入huggingface下载的模型 玩转大语言模型——langchain调用ollama视觉多模态语言模型 玩转大语言模型——使用GraphRAGOllama构建知识图谱 玩转大语言模型——完美解决Gra…...
【Windows Server实战】生产环境云和NPS快速搭建
前置条件 本文假定你已达成以下前提条件: 有域控DC。有证书服务器(AD CS)。已使用Microsoft Intune或者GPO为客户机申请证书。服务器上至少有两张网卡(如果用虚拟机做的测试环境,可以用一张HostOnly网卡做测试&#…...
[ESP32:Vscode+PlatformIO]新建工程 常用配置与设置
2025-1-29 一、新建工程 选择一个要创建工程文件夹的地方,在空白处鼠标右键选择通过Code打开 打开Vscode,点击platformIO图标,选择PIO Home下的open,最后点击new project 按照下图进行设置 第一个是工程文件夹的名称 第二个是…...
【NLP251】Transformer精讲 残差链接与层归一化
精讲部分,主要是对Transformer的深度理解方便日后从底层逻辑进行创新,对于仅应用需求的小伙伴可以跳过这一部分,不影响正常学习。 1. 残差模块 何凯明在2015年提出的残差网络(ResNet),Transformer在2016年…...
康德哲学与自组织思想的渊源:从《判断力批判》到系统论的桥梁
康德哲学与自组织思想的渊源:从《判断力批判》到系统论的桥梁 第一节:康德哲学中的自然目的论与自组织思想 核心内容: 康德哲学中的自然目的论和反思判断力概念,为现代系统论中的自组织思想提供了哲学基础,预见了复…...
SpringBoot 整合 SpringMVC:SpringMVC的注解管理
分类: 中央转发器(DispatcherServlet)控制器视图解析器静态资源访问消息转化器格式化静态资源管理 中央转发器: 中央转发器被 SpringBoot 自动接管,不需要我们在 web.xml 中配置: <servlet><servlet-name>chapter2&l…...
松灵机器人 scout ros2 驱动 安装
必须使用 ubuntu22 必须使用 链接的humble版本 #打开can 口 sudo modprobe gs_usbsudo ip link set can0 up type can bitrate 500000sudo ip link set can0 up type can bitrate 500000sudo apt install can-utilscandump can0mkdir -p ~/ros2_ws/srccd ~/ros2_ws/src git cl…...
使用 Numpy 自定义数据集,使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
1. 导入必要的库 首先,导入我们需要的库:Numpy、Pytorch 和相关工具包。 import numpy as np import torch import torch.nn as nn import torch.optim as optim from sklearn.metrics import accuracy_score, recall_score, f1_score2. 自定义数据集 …...
MapReduce简单应用(一)——WordCount
目录 1. 执行过程1.1 分割1.2 Map1.3 Combine1.4 Reduce 2. 代码和结果2.1 pom.xml中依赖配置2.2 工具类util2.3 WordCount2.4 结果 参考 1. 执行过程 假设WordCount的两个输入文本text1.txt和text2.txt如下。 Hello World Bye WorldHello Hadoop Bye Hadoop1.1 分割 将每个文…...
c语言(关键字)
前言: 感谢b站鹏哥c语言 内容: 栈区(存放局部变量) 堆区 静态区(存放静态变量) rigister关键字 寄存器,cpu优先从寄存器里边读取数据 #include <stdio.h>//typedef,类型…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
