当前位置: 首页 > news >正文

项目练习:重写若依后端报错cannot be cast to com.xxx.model.LoginUser

文章目录

  • 一、情景说明
  • 二、解决办法

一、情景说明

在重写若依后端服务的过程中
使用了Redis存放LoginUser对象数据
那么,有存就有取
在取值的时候,报错
在这里插入图片描述

二、解决办法

方法1、在TokenService中修改如下

getLoginUser  方法中:LoginUser user = redisCache.getCacheObject(userKey);
改为Object cacheObject = redisCache.getCacheObject(userKey);LoginUser user  = JSON.parseObject(JSONObject.toJSONString(cacheObject),LoginUser.class);	

方法2:修改序列化配置类(推荐)
若依的Redis序列化类:FastJson2JsonRedisSerializer
在这里插入图片描述
图中的常量对应的是:Constants
在这里插入图片描述
会发现,这里指定的类路径是com.ruoyi,和我重写的路径不对应,所以,无法cast
所以,把这里的包路径改成自己的即可。

相关文章:

项目练习:重写若依后端报错cannot be cast to com.xxx.model.LoginUser

文章目录 一、情景说明二、解决办法 一、情景说明 在重写若依后端服务的过程中 使用了Redis存放LoginUser对象数据 那么,有存就有取 在取值的时候,报错 二、解决办法 方法1、在TokenService中修改如下 getLoginUser 方法中:LoginUser u…...

代码随想录刷题笔记

数组 二分查找 ● 704.二分查找 tips:两种方法,左闭右开和左闭右闭,要注意区间不变性,在判断mid的值时要看mid当前是否使用过 ● 35.搜索插入位置 ● 34.在排序数组中查找元素的第一个和最后一个位置 tips:寻找左右边…...

AI智慧社区--人脸识别

前端 人脸的采集按钮&#xff1a; 首先对于选中未认证的居民记录&#xff0c;进行人脸采集 前端的按钮 <el-form-item><el-button v-has"sys:person:info" type"info" icon"el-icon-camera" :disabled"ids.length < 0" …...

对象的实例化、内存布局与访问定位

一、创建对象的方式 二、创建对象的步骤: 一、判断对象对应的类是否加载、链接、初始化: 虚拟机遇到一条new指令&#xff0c;首先去检查这个指令的参数能否在Metaspace的常量池中定位到一个类的符号引用&#xff0c;并且检查这个符号引用代表的类是否已经被加载、解析和初始化…...

React基础知识回顾详解

以下是React从前端面试基础到进阶的系统性学习内容&#xff0c;包含核心知识点和常见面试题解析&#xff1a; 一、React基础核心 JSX原理与本质 JSX编译过程&#xff08;Babel转换&#xff09;虚拟DOM工作原理面试题&#xff1a;React为何使用className而不是class&#xff1f;…...

开发第一个安卓页面

一&#xff1a;在java.com.example.myapplication下创建MainActivity的JAVA类 里面的代码要把xml的页面名字引入 二&#xff1a;如果没有这两个&#xff0c;可以手动创建layout文件夹和activity_main.xml activity_main.xml使用来做页面的。 三、找到这个文件 把你的JAVA类引入…...

物联网 STM32【源代码形式-ESP8266透传】连接OneNet IOT从云产品开发到底层MQTT实现,APP控制 【保姆级零基础搭建】

一、MQTT介绍 MQTT&#xff08;Message Queuing Telemetry Transport&#xff0c;消息队列遥测传输协议&#xff09;是一种基于发布/订阅模式的轻量级通讯协议&#xff0c;构建于TCP/IP协议之上。它最初由IBM在1999年发布&#xff0c;主要用于在硬件性能受限和网络状况不佳的情…...

微服务-配置管理

配置管理 到目前为止我们已经解决了微服务相关的几个问题&#xff1a; 微服务远程调用微服务注册、发现微服务请求路由、负载均衡微服务登录用户信息传递 不过&#xff0c;现在依然还有几个问题需要解决&#xff1a; 网关路由在配置文件中写死了&#xff0c;如果变更必须重…...

基于SpringBoot的智慧康老疗养院管理系统的设计与实现(源码+SQL脚本+LW+部署讲解等)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…...

100.1 AI量化面试题:解释夏普比率(Sharpe Ratio)的计算方法及其在投资组合管理中的应用,并说明其局限性

目录 0. 承前1. 夏普比率的基本概念1.1 定义与计算方法1.2 实际计算示例 2. 在投资组合管理中的应用2.1 投资组合选择2.2 投资组合优化 3. 夏普比率的局限性3.1 统计假设的限制3.2 实践中的问题 4. 改进方案4.1 替代指标4.2 实践建议 5. 回答话术 0. 承前 如果想更加全面清晰地…...

LLMs之OpenAI o系列:OpenAI o3-mini的简介、安装和使用方法、案例应用之详细攻略

LLMs之OpenAI o系列&#xff1a;OpenAI o3-mini的简介、安装和使用方法、案例应用之详细攻略 目录 相关文章 LLMs之o3&#xff1a;《Deliberative Alignment: Reasoning Enables Safer Language Models》翻译与解读 LLMs之OpenAI o系列&#xff1a;OpenAI o3-mini的简介、安…...

深度解析:网站快速收录与网站安全性的关系

本文转自&#xff1a;百万收录网 原文链接&#xff1a;https://www.baiwanshoulu.com/58.html 网站快速收录与网站安全性之间存在着密切的关系。以下是对这一关系的深度解析&#xff1a; 一、网站安全性对收录的影响 搜索引擎惩罚&#xff1a; 如果一个网站存在安全隐患&am…...

【Rust自学】16.2. 使用消息传递来跨线程传递数据

喜欢的话别忘了点赞、收藏加关注哦&#xff0c;对接下来的教程有兴趣的可以关注专栏。谢谢喵&#xff01;(&#xff65;ω&#xff65;) 16.2.1. 消息传递 有一种很流行而且能保证安全并发的技术&#xff08;或者叫机制&#xff09;叫做消息传递。在这种机制里&#xff0c;线…...

如何实现滑动网格的功能

文章目录 1 概念介绍2 使用方法3 示例代码 我们在上一章回中介绍了SliverList组件相关的内容&#xff0c;本章回中将介绍SliverGrid组件.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1 概念介绍 我们在本章回中介绍的SliverGrid组件是一种网格类组件&#xff0c;主要用来…...

使用C# 如何获取本机连接的WIFI名称[C# ---1]

前言 楼主最近在写一个WLAN上位机&#xff0c;遇到了使用C#查询SSID 的问题。CSDN上很多文章都比较老了&#xff0c;而且代码过于复杂。楼主自己想了一个使用CMD来获得SSID的方法 C#本身是没有获得WINDOWS网路信息的能力&#xff0c;必须要用系统API&#xff0c;WMI什么的&…...

【Docker】快速部署 Nacos 注册中心

【Docker】快速部署 Nacos 注册中心 引言 Nacos 注册中心是一个用于服务发现和配置管理的开源项目。提供了动态服务发现、服务健康检查、动态配置管理和服务管理等功能&#xff0c;帮助开发者更轻松地构建微服务架构。 仓库地址 https://github.com/alibaba/nacos 步骤 拉取…...

OpenCV:闭运算

目录 1. 简述 2. 用膨胀和腐蚀实现闭运算 2.1 代码示例 2.2 运行结果 3. 闭运算接口 3.1 参数详解 3.2 代码示例 3.3 运行结果 4. 闭运算的应用场景 5. 注意事项 相关阅读 OpenCV&#xff1a;图像的腐蚀与膨胀-CSDN博客 OpenCV&#xff1a;开运算-CSDN博客 1. 简述…...

Python | Pytorch | Tensor知识点总结

如是我闻&#xff1a; Tensor 是我们接触Pytorch了解到的第一个概念&#xff0c;这里是一个关于 PyTorch Tensor 主题的知识点总结&#xff0c;涵盖了 Tensor 的基本概念、创建方式、运算操作、梯度计算和 GPU 加速等内容。 1. Tensor 基本概念 Tensor 是 PyTorch 的核心数据结…...

aws(学习笔记第二十六课) 使用AWS Elastic Beanstalk

aws(学习笔记第二十六课) 使用aws Elastic Beanstalk 学习内容&#xff1a; AWS Elastic Beanstalk整体架构AWS Elastic Beanstalk的hands onAWS Elastic Beanstalk部署node.js程序包练习使用AWS Elastic Beanstalk的ebcli 1. AWS Elastic Beanstalk整体架构 官方的guide AWS…...

《OpenCV》——图像透视转换

图像透视转换简介 在 OpenCV 里&#xff0c;图像透视转换属于重要的几何变换&#xff0c;也被叫做投影变换。下面从原理、实现步骤、相关函数和应用场景几个方面为你详细介绍。 原理 实现步骤 选取对应点&#xff1a;要在源图像和目标图像上分别找出至少四个对应的点。这些对…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件&#xff0c;我的文件路径是/etc/mysql/my.cnf&#xff0c;有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

性能优化中,多面体模型基本原理

1&#xff09;多面体编译技术是一种基于多面体模型的程序分析和优化技术&#xff0c;它将程序 中的语句实例、访问关系、依赖关系和调度等信息映射到多维空间中的几何对 象&#xff0c;通过对这些几何对象进行几何操作和线性代数计算来进行程序的分析和优 化。 其中&#xff0…...