【xdoj-离散线上练习】T251(C++)
解题反思:
- 开始敲代码前想清楚整个思路比什么都重要嘤嘤嘤!
- 看到输入m, n和矩阵,注意不能想当然地认为就是高m,宽n的矩阵,细看含义
- 比如本题给出了树的邻接矩阵,就是n*n的,代码实现中没有用到m这个条件
- 不熟语法
-
vector<vector<int>>tree(m, vector<int>(n, 0)); //定义二维m*n数组tree,并将每个元素初始化为0;
题目见下
题目:任意构造一棵树,输出以指定的某一结点为根节点的子树。
问题描述
任意构造一棵树,输出以指定的某一结点为根节点的子树。下面给出一个样例示意图,输入样例的邻接矩阵,输出分别以a,c,e结点为根节点的子树。
输入格式
第一行输入图的顶点数n和边数m,第二行开始输入树的邻接矩阵(结点名称默认为1,2,3,...,n)。第n+2行输入1,2,3,...,n中选定的某一结点A。
输出格式
选择某一结A点为树根后,出现数字以及(数字1,数字2)的形式,
数字表示点,(数字1,数字2)表示以1、2为顶点的边,将各个顶点依照()里的关系组合起来,即以输入字母为顶点的子树。
样例输入
21 20
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3
样例输出
3 (3,7)7 (3,8)8 (8,15)15 (8,16)16
题目分析&代码实现
其实就是一个树的深度优先搜索的变形,本代码用lambda表达式实现递归函数。
#include<bits/stdc++.h>
using namespace std;int main()
{int n, m;cin>>n>>m;vector<vector<int>>tree(n+1, vector<int>(n+1));//注意从1开始!for(int i=1; i<=n; i++){for(int j=1; j<=n; j++){ cin>>tree[i][j];}}int root; cin>>root;auto dfs = [&](auto& dfs, int cur) -> void{ for(int i=1; i<=n; i++){if(tree[cur][i] == 1){cout<<"("<<cur<<","<<i<<")"<<i<<" ";dfs(dfs, i);}}return;};cout<<root<<" ";dfs(dfs, root);return 0;
}
~希望对你有启发~
相关文章:
【xdoj-离散线上练习】T251(C++)
解题反思: 开始敲代码前想清楚整个思路比什么都重要嘤嘤嘤!看到输入m, n和矩阵,注意不能想当然地认为就是高m,宽n的矩阵,细看含义 比如本题给出了树的邻接矩阵,就是n*n的,代码实现中没有用到m这…...
定时器按键tim_key模版
低优先级放在高优先级内势必是程序卡死 把高优先级放到低优先级内,会使程序卡死 可修改 Debuger调试方法 Pwm rcc #include "my_main.h" uint8_t led_sta0x10; char text[30]; void LED_Disp(uint8_t dsLED) {HAL_GPIO_WritePin(GPIOC,GPIO_PIN_All,GPI…...
Kanass快速安装配置教程(入门级)
Kanass是一款国产开源免费的项目管理工具,工具简洁易用、开源免费,本文将介绍如何快速安装配置kanass,以快速上手。 1、快速安装 1.1 Linux 安装 点击官网 -> 演示与下载 ->下载,下载Linux安装包,…...
无用知识之:std::initializer_list的秘密
先说结论,用std::initializer_list初始化vector,内部逻辑是先生成了一个临时数组,进行了拷贝构造,然后用这个数组的起终指针初始化initializer_list。然后再用initializer_list对vector进行初始化,这个动作又触发了拷贝…...
论文阅读笔记 —— 英文论文常见缩写及含义
正文 缩写全称含义Reference发音w.r.twith reference to关于, 根据WRT - Wikiet al.拉丁语et alia的缩写等等Et Al. | Meaning & Use in APA, MLA & Chicago–etc拉丁语et cetera的缩写等等ETC - Cambridge DictionaryWhat’s ‘etc.’ an abbreviation of (and what …...
实验9 JSP访问数据库(二)
实验9 JSP访问数据库(二) 目的: 1、熟悉JDBC的数据库访问模式。 2、掌握预处理语句的使用 实验要求: 1、使用Tomcat作为Web服务器 2、通过JDBC访问数据库,实现增删改查功能的实现 3、要求提交实验报告,将代…...
[c语言日寄]C语言类型转换规则详解
【作者主页】siy2333 【专栏介绍】⌈c语言日寄⌋:这是一个专注于C语言刷题的专栏,精选题目,搭配详细题解、拓展算法。从基础语法到复杂算法,题目涉及的知识点全面覆盖,助力你系统提升。无论你是初学者,还是…...
Airflow:选择合适执行器扩展任务执行
Apache Airflow是面向开发人员使用的,以编程方式编写、调度和监控的数据流程平台。可伸缩性是其关键特性之一,Airflow支持使用不同的执行器来执行任务。在本文中,我们将深入探讨如何利用这些执行器在Airflow中有效地扩展任务执行。 理解Airfl…...
使用冒泡排序模拟实现qsort函数
1.冒泡排序 #define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h>int main() {int arr[] { 0,2,5,3,4,8,9,7,6,1 };int sz sizeof(arr) / sizeof(arr[0]);//冒泡排序一共排序 sz-1 趟for (int i 0; i < sz - 1; i){//标志位,如果有序,直接…...
AI大模型开发原理篇-4:神经概率语言模型NPLM
神经概率语言模型(NPLM)概述 神经概率语言模型(Neural Probabilistic Language Model, NPLM) 是一种基于神经网络的语言建模方法,它将传统的语言模型和神经网络结合在一起,能够更好地捕捉语言中的复杂规律…...
Eigen::Tensor使用帮助
0 引言 用python实现了某些算法之后,想转成C来获取更高的性能。但是python数组的操作太灵活了,尤其是3维、4维、5维等高维数组,以及它们的广播、数组坐标、切片等机制。还有numpy的pad、where等操作更是给C转换带来了更多的麻烦。 查阅了相…...
git基础使用--3---git安装和基本使用
文章目录 git基础使用--3--git-安装和基本使用1. git工具安装1.1 git1.2 TortoiseGit1.3 远程仓2. git本地仓库版本管理2.1 git常用命令2.2 git基本操作2.2.1 设置用户名和邮箱 2.2 git基本操作2.2.1 初始化本地仓 git init2.2.2 查看本地库状态 git status2.2.3 添加暂缓区2.2…...
html的字符实体和颜色表示
在HTML中,颜色可以通过以下几种方式表示,以下是具体的示例: 1. 十六进制颜色代码 十六进制颜色代码以#开头,后面跟随6个字符,每两个字符分别表示红色、绿色和蓝色的强度。例如: • #FF0000:纯红…...
OpenAI发布o3-mini:免费推理模型,DeepSeek引发的反思
引言 在人工智能领域,OpenAI再次引领潮流,推出了全新的推理模型系列——o3-mini。这一系列包括low、medium和high三个版本,旨在进一步推动低成本推理的发展。与此同时,OpenAI的CEO奥特曼也在Reddit的“有问必答”活动中罕见地公开…...
Zemax 中带有体素探测器的激光谐振腔
激光谐振腔是激光系统的基本组成部分,在光的放大和相干激光辐射的产生中起着至关重要的作用。 激光腔由两个放置在光学谐振器两端的镜子组成。一个镜子反射率高(后镜),而另一个镜子部分透明(输出耦合器)。…...
大模型训练(5):Zero Redundancy Optimizer(ZeRO零冗余优化器)
0 英文缩写 Large Language Model(LLM)大型语言模型Data Parallelism(DP)数据并行Distributed Data Parallelism(DDP)分布式数据并行Zero Redundancy Optimizer(ZeRO)零冗余优化器 …...
C# 实现 “Hello World” 教程
.NET学习资料 .NET学习资料 .NET学习资料 C# 作为一种广泛应用于.NET 开发的编程语言,以其简洁、高效和类型安全等特性,深受开发者喜爱。在踏入 C# 编程领域时,编写经典的 “Hello World” 程序是重要的起点,它能帮助我们快速熟…...
LabVIEW无线齿轮监测系统
本案例介绍了基于LabVIEW的无线齿轮监测系统设计。该系统利用LabVIEW编程语言和改进的天牛须算法优化支持向量机,实现了无线齿轮故障监测。通过LabVIEW软件和相关硬件,可以实现对齿轮箱振动信号的采集、传输和故障识别,集远程采集、数据库存储…...
IM 即时通讯系统-01-概览
前言 有时候希望有一个 IM 工具,比如日常聊天,或者接受报警信息。 其实主要是工作使用,如果是接收报警等场景,其实DD这种比较符合场景。 那么有没有必要再创造一个DD呢? 答案是如果处于个人的私有化使用࿰…...
【人工智能】 在本地运行 DeepSeek 模型:Ollama 安装指南
持续更新。。。。。。。。。。。。。。。 【人工智能】 在本地运行 DeepSeek 模型:Ollama 安装指南 安装 Ollama安装 DeepSeek 模型选择版本 ,版本越高,参数越多 性能越好使用 DeepSeek 模型 安装 Ollama 访问 Ollama 官网: 前往 https://oll…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
