P7497 四方喝彩 Solution
Description
给定序列 a = ( a 1 , a 2 , ⋯ , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,⋯,an),有 m m m 个操作,分四种:
- add ( l , r , v ) \operatorname{add}(l,r,v) add(l,r,v):对于所有 i ∈ [ l , r ] i \in [l,r] i∈[l,r] 执行 a i ← a i + v a_i \gets a_i+v ai←ai+v.
- mul ( l , r , v ) \operatorname{mul}(l,r,v) mul(l,r,v):对于所有 i ∈ [ l , r ] i \in [l,r] i∈[l,r] 执行 a i ← a i × v a_i \gets a_i\times v ai←ai×v.
- freeze ( l , r , x ) \operatorname{freeze}(l,r,x) freeze(l,r,x):区间 [ l , r ] [l,r] [l,r] 在接下来的 x x x 次操作中被冻结,不会受修改操作影响,已有的冻结效果不会被替换.
- query ( l , r ) \operatorname{query}(l,r) query(l,r):求 ( ∑ i = l r a i ) m o d ( 1 0 9 + 7 ) (\sum\limits_{i=l}^r a_i) \bmod (10^9+7) (i=l∑rai)mod(109+7).
Limitations
1 ≤ n , m ≤ 2 × 1 0 5 1 \le n,m \le 2\times 10^5 1≤n,m≤2×105
0 ≤ a i , v ≤ 1 0 9 + 7 0 \le a_i,v \le 10^9+7 0≤ai,v≤109+7
设当前为第 t t t 次操作,则 0 ≤ x ≤ m − k 0 \le x \le m-k 0≤x≤m−k
1 s , 512 MB 1\text{s},512\text{MB} 1s,512MB
Solution
将 freeze \operatorname{freeze} freeze 操作拆成冻结和解冻两个操作,将解冻操作按解冻时间记在邻接表上.
考虑 add \operatorname{add} add,由于区间可能部分冻结,故乘的长度不是 ( r − l + 1 ) (r-l+1) (r−l+1) 而是未封锁元素个数,需要维护.
考虑 mul \operatorname{mul} mul,同样由于区间可能部分冻结,不能直接 × v \times v ×v,而是将未冻结部分 × v \times v ×v,所以需要分开维护未冻结部分和冻结部分的和.
考虑多个冻结操作重叠,由于合并它们很麻烦,所以直接叠加,等到完全解冻才继续 pushdown,所以维护的是冻结次数而不是是否冻结。
写的时候注意细节,具体可以看代码。
Code
8.06 KB , 1.12 s , 31.29 MB (in total, C++20 with O2) 8.06\text{KB},1.12\text{s},31.29\text{MB}\;\texttt{(in total, C++20 with O2)} 8.06KB,1.12s,31.29MB(in total, C++20 with O2)
// Problem: P7497 四方喝彩
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P7497
// Memory Limit: 512 MB
// Time Limit: 1000 ms
//
// Powered by CP Editor (https://cpeditor.org)#include <bits/stdc++.h>
using namespace std;using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;template<class T>
bool chmax(T &a, const T &b){if(a < b){ a = b; return true; }return false;
}template<class T>
bool chmin(T &a, const T &b){if(a > b){ a = b; return true; }return false;
}template <int MOD>
struct modint {int val;static int norm(const int& x) { return x < 0 ? x + MOD : x; }modint inv() const {int a = val, b = MOD, u = 1, v = 0, t;while (b > 0) t = a / b, swap(a -= t * b, b), swap(u -= t * v, v);return modint(u);}modint() : val(0) {}modint(const int& m) : val(norm(m % MOD)) {}modint(const long long& m) : val(norm(m % MOD)) {}modint operator-() const { return modint(norm(-val)); }bool operator==(const modint& o) { return val == o.val; }bool operator!=(const modint &o) { return val != o.val; }bool operator<(const modint& o) { return val < o.val; }bool operator>(const modint& o) { return val > o.val; }bool operator<=(const modint& o) { return val <= o.val; }bool operator>=(const modint& o) { return val >= o.val; }modint& operator++() { return *this += 1; }modint operator++(int) { modint temp = *this; ++(*this); return temp; }modint& operator--() { return *this -= 1; }modint operator--(int) { modint temp = *this; --(*this); return temp; }modint& operator+=(const modint& o) { return val = (1ll * val + o.val) % MOD, *this; }modint& operator-=(const modint& o) { return val = norm(1ll * val - o.val), *this; }modint& operator*=(const modint& o) { return val = static_cast<int>(1ll * val * o.val % MOD), *this; }modint& operator/=(const modint& o) { return *this *= o.inv(); }modint& operator^=(const modint& o) { return val ^= o.val, *this; }modint& operator>>=(const modint& o) { return val >>= o.val, *this; }modint& operator<<=(const modint& o) { return val <<= o.val, *this; }modint operator-(const modint& o) const { return modint(*this) -= o; }modint operator+(const modint& o) const { return modint(*this) += o; }modint operator*(const modint& o) const { return modint(*this) *= o; }modint operator/(const modint& o) const { return modint(*this) /= o; }modint operator^(const modint& o) const { return modint(*this) ^= o; }modint operator>>(const modint& o) const { return modint(*this) >>= o; }modint operator<<(const modint& o) const { return modint(*this) <<= o; }friend std::istream& operator>>(std::istream& is, modint& a) {long long v;return is >> v, a.val = norm(v % MOD), is;}friend std::ostream& operator<<(std::ostream& os, const modint& a) { return os << a.val; }friend std::string tostring(const modint& a) { return std::to_string(a.val); }template <class T>friend modint qpow(const modint& a, const T& b) {modint x = a, res = 1;for (T p = b; p; x *= x, p >>= 1)if (p & 1) res *= x;return res;}
};using Z = modint<1000000007>;struct Node {int l, r, size, blocks;Z suma, sumb, add, mul;
};using Tree = vector<Node>;int ls(int u) { return u * 2 + 1; }
int rs(int u) { return u * 2 + 2; }void pushup(Tree& tr, int u) {if (tr[u].blocks == 0) {tr[u].suma = tr[ls(u)].suma + tr[rs(u)].suma;tr[u].sumb = tr[ls(u)].sumb + tr[rs(u)].sumb;tr[u].size = tr[ls(u)].size + tr[rs(u)].size;}
}void apply(Node& rt, Node& son) {if (son.blocks == 0) {son.suma = son.suma * rt.mul + rt.add * son.size;son.add = son.add * rt.mul + rt.add;son.mul *= rt.mul;}
}void pushdown(Tree& tr, int u) {apply(tr[u], tr[ls(u)]);apply(tr[u], tr[rs(u)]);tr[u].add = 0;tr[u].mul = 1;
}void build(Tree& tr, int u, int l, int r, vector<int>& a) {tr[u].l = l;tr[u].r = r;tr[u].mul = 1;tr[u].add = 0;if (l == r) {tr[u].suma = a[l];tr[u].size = 1;return;}int mid = (l + r) >> 1;build(tr, ls(u), l, mid, a);build(tr, rs(u), mid + 1, r, a);pushup(tr, u);
}void add(Tree& tr, int u, int l, int r, Z val) {if (tr[u].l > r || tr[u].r < l || tr[u].blocks > 0) {return;}if (l <= tr[u].l && tr[u].r <= r) {tr[u].suma += val * tr[u].size;tr[u].add += val;return;}int mid = (tr[u].l + tr[u].r) >> 1;pushdown(tr, u);if (l <= mid) {add(tr, ls(u), l, r, val);}if (r > mid) {add(tr, rs(u), l, r, val);}pushup(tr, u);
}void mul(Tree& tr, int u, int l, int r, Z val) {if (tr[u].l > r || tr[u].r < l || tr[u].blocks > 0) {return;}if (l <= tr[u].l && tr[u].r <= r) {tr[u].suma *= val;tr[u].add *= val;tr[u].mul *= val;return;}int mid = (tr[u].l + tr[u].r) >> 1;pushdown(tr, u);if (l <= mid) {mul(tr, ls(u), l, r, val);}if (r > mid) {mul(tr, rs(u), l, r, val);}pushup(tr, u);
}void block(Tree& tr, int u, int l, int r) {if (tr[u].l > r || tr[u].r < l) {return;}if (l <= tr[u].l && tr[u].r <= r) {if (tr[u].l < tr[u].r) {pushdown(tr, u);}if (tr[u].blocks == 0) {tr[u].sumb += tr[u].suma;tr[u].suma = 0;tr[u].size = 0;}tr[u].blocks++;return;}int mid = (tr[u].l + tr[u].r) >> 1;pushdown(tr, u);if (l <= mid) {block(tr, ls(u), l, r);}if (r > mid) {block(tr, rs(u), l, r);}pushup(tr, u);
}void unblock(Tree& tr, int u, int l, int r) {if (tr[u].l > r || tr[u].r < l) {return;}if (l <= tr[u].l && tr[u].r <= r) {tr[u].blocks--;if (tr[u].blocks == 0) {if (tr[u].l == tr[u].r) {tr[u].suma += tr[u].sumb;tr[u].sumb = 0;tr[u].size = 1;}else {pushup(tr, u);}}return;}int mid = (tr[u].l + tr[u].r) >> 1;pushdown(tr, u);if (l <= mid) {unblock(tr, ls(u), l, r);}if (r > mid) {unblock(tr, rs(u), l, r);}pushup(tr, u);
}Z query(Tree& tr, int u, int l, int r) {if (tr[u].l > r || tr[u].r < l) {return 0;}if (l <= tr[u].l && tr[u].r <= r) {return tr[u].suma + tr[u].sumb;}int mid = (tr[u].l + tr[u].r) >> 1;Z ans = 0;pushdown(tr, u);if (l <= mid) {ans += query(tr, ls(u), l, r);}if (r > mid) {ans += query(tr, rs(u), l, r);}return ans;
}signed main() {ios::sync_with_stdio(0);cin.tie(0), cout.tie(0);int n, m;scanf("%d%d", &n, &m);vector<int> a(n);for (int i = 0; i < n; i++) {scanf("%d", &a[i]);}Tree seg(n << 2);vector<vector<pair<int, int>>> blocks(m);build(seg, 0, 0, n - 1, a);for (int i = 0, op, l, r, v; i < m; i++) {scanf("%d%d%d", &op, &l, &r);l--, r--;if (op == 1) {scanf("%d", &v);add(seg, 0, l, r, Z(v));}if (op == 2) {scanf("%d", &v);mul(seg, 0, l, r, Z(v));}if (op == 3) {scanf("%d", &v);block(seg, 0, l, r);blocks[i + v].emplace_back(l, r);}if (op == 4) {printf("%d\n", query(seg, 0, l, r).val);}for (auto [le, ri] : blocks[i]) {unblock(seg, 0, le, ri);}}return 0;
}
相关文章:
P7497 四方喝彩 Solution
Description 给定序列 a ( a 1 , a 2 , ⋯ , a n ) a(a_1,a_2,\cdots,a_n) a(a1,a2,⋯,an),有 m m m 个操作,分四种: add ( l , r , v ) \operatorname{add}(l,r,v) add(l,r,v):对于所有 i ∈ [ l , r ] i \in [l,r…...
深入剖析 Bitmap 数据结构:原理、应用与优化策略
深入理解 Bitmap 数据结构 一、引言 在计算机科学领域,数据的高效存储和快速处理一直是核心问题。随着数据量的不断增长,如何用最少的空间和最快的速度来表示和操作数据变得至关重要。Bitmap(位图)作为一种简洁而强大的数据结构…...
bypass hcaptcha、hcaptcha逆向
可以过steam,已支持并发,欢迎询问! 有事危,ProfessorLuoMing...
WebForms DataList 深入解析
WebForms DataList 深入解析 引言 在Web开发领域,控件是构建用户界面(UI)的核心组件。ASP.NET WebForms框架提供了丰富的控件,其中DataList控件是一个灵活且强大的数据绑定控件。本文将深入探讨WebForms DataList控件的功能、用法以及在实际开发中的应用。 DataList控件…...
C# List 列表综合运用实例⁓Hypak原始数据处理编程小结
C# List 列表综合运用实例⁓Hypak原始数据处理编程小结 1、一个数组解决很麻烦引出的问题1.1、RAW 文件尾部数据如下:1.2、自定义标头 ADD 或 DEL 的数据结构如下: 2、程序 C# 源代码的编写和剖析2.1、使用 ref 关键字,通过引用将参数传递,以…...
【C++基础】字符串/字符读取函数解析
最近在学C以及STL,打个基础 参考: c中的char[] ,char* ,string三种字符串变量转化的兼容原则 c读取字符串和字符的6种函数 字符串结构 首先明确三种字符串结构的兼容关系:string>char*>char [] string最灵活,内置增删查改…...
大模型-CLIP 详细介绍
CLIP简介 CLIP(Contrastive Language–Image Pre-training)是由OpenAI在2021年提出的一种多模态机器学习模型。它旨在通过大量的文本-图像对进行训练,从而学会理解图像内容,并能将这些内容与相应的自然语言描述相匹配。CLIP的核心…...
1.4 Go 数组
一、数组 1、简介 数组是切片的基础 数组是一个固定长度、由相同类型元素组成的集合。在 Go 语言中,数组的长度是类型的一部分,因此 [5]int 和 [10]int 是两种不同的类型。数组的大小在声明时确定,且不可更改。 简单来说,数组…...
WebSocket——环境搭建与多环境配置
一、前言:为什么要使用多环境配置? 在开发过程中,我们通常会遇到多个不同的环境,比如开发环境(Dev)、测试环境(Test)、生产环境(Prod)等。每个环境的配置和需…...
三、递推关系与母函数,《组合数学(第4版)》卢开澄 卢华明
文章目录 一、似函数、非函数1.1 母函数1.2 母函数的简单应用1.3 整数拆分1.4 Ferrers 图像1.5 母函数能做什么1.6 递推关系1.6.1 Hanoi 问题1.6.2 偶数个5怎么算 1.7 Fibonacci 序列1.7.1 Fibonacci 的奇妙性质1.7.2 Fibonacci 恒等式1.7.3 Fibonacci 的直接表达式1.7.4 Fibon…...
线程互斥同步
前言: 简单回顾一下上文所学,上文我们最重要核心的工作就是介绍了我们线程自己的LWP和tid究竟是个什么,总结一句话,就是tid是用户视角下所认为的概念,因为在Linux系统中,从来没有线程这一说法,…...
DeepSeek R1 AI 论文翻译
摘要 原文地址: DeepSeek R1 AI 论文翻译 我们介绍了我们的第一代推理模型,DeepSeek-R1-Zero 和 DeepSeek-R1。 DeepSeek-R1-Zero 是一个通过大规模强化学习(RL)训练的模型,且在此过程中未使用监督微调(…...
如何计算态势感知率?
态势感知率(Situational Awareness Rate)的计算通常需要结合具体应用场景和定义目标,通常涉及对感知、理解、预测三个层次的量化分析。不同领域(如网络安全、军事、工业控制等)可能有不同的量化方式。通用思路和常见方…...
二、CSS笔记
(一)css概述 1、定义 CSS是Cascading Style Sheets的简称,中文称为层叠样式表,用来控制网页数据的表现,可以使网页的表现与数据内容分离。 2、要点 怎么找到标签怎么操作标签对象(element) 3、css的四种引入方式 3.1 行内式 在标签的style属性中设定CSS样式。这种方…...
Alibaba开发规范_异常日志之日志规约:最佳实践与常见陷阱
文章目录 引言1. 使用SLF4J日志门面规则解释代码示例正例反例 2. 日志文件的保存时间规则解释 3. 日志文件的命名规范规则解释代码示例正例反例 4. 使用占位符进行日志拼接规则解释代码示例正例反例 5. 日志级别的开关判断规则解释代码示例正例反例 6. 避免重复打印日志规则解释…...
使用istio实现权重路由
istio概述 **概述:**Istio 是一个开源的 服务网格(Service Mesh)解决方案,主要用于管理、保护和监控微服务架构中的服务通信。它为微服务提供了基础设施层的控制功能,不需要更改应用程序的代码,从而解决服…...
M. Triangle Construction
题目链接:Problem - 1906M - Codeforces 题目大意:给一个 n 边形, 每一个边上有a[ i ] 个点, 在此多边形上求可以连的三角形有多少个, 每个点只能用一次。 输入: 第一行是一个整数 N ( 3 ≤ N ≤ 200000…...
每天学点小知识之设计模式的艺术-策略模式
行为型模式的名称、定义、学习难度和使用频率如下表所示: 1.如何理解模板方法模式 模板方法模式是结构最简单的行为型设计模式,在其结构中只存在父类与子类之间的继承关系。通过使用模板方法模式,可以将一些复杂流程的实现步骤封装在一系列基…...
机试题——到邻国目标城市的最短距离
题目描述 A国与B国是相邻的两个国家,每个国家都有很多城市。国家内部有很多连接城市的公路,国家之间也有很多跨国公路,连接两个国家的边界城市。两个国家一共有N个城市,编号从1到N,一共有M条公路,包括国内…...
Python + Tkinter + pyttsx3实现的桌面版英语学习工具
Python Tkinter pyttsx3实现的桌面版英语学习工具 在多行文本框输入英文句子,双击其中的英文单词,给出英文读音和中文含义和音标。 本程序查询本地词典数据。通过菜单栏"文件"->"打开词典编辑器"进入编辑界面。 词典数据存储…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...
Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成
一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...
华为OD机试-最短木板长度-二分法(A卷,100分)
此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...
【Veristand】Veristand环境安装教程-Linux RT / Windows
首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...
【若依】框架项目部署笔记
参考【SpringBoot】【Vue】项目部署_no main manifest attribute, in springboot-0.0.1-sn-CSDN博客 多一个redis安装 准备工作: 压缩包下载:http://download.redis.io/releases 1. 上传压缩包,并进入压缩包所在目录,解压到目标…...
