pytorch基于FastText实现词嵌入
FastText 是 Facebook AI Research 提出的 改进版 Word2Vec,可以: ✅ 利用 n-grams 处理未登录词
比 Word2Vec 更快、更准确
适用于中文等形态丰富的语言
完整的 PyTorch FastText 代码(基于中文语料),包含:
- 数据预处理(分词 + n-grams)
- 模型定义
- 训练
- 测试
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import jieba
from collections import Counter
import random# ========== 1. 数据预处理 ==========
corpus = ["我们 喜欢 深度 学习","自然 语言 处理 是 有趣 的","人工智能 改变 了 世界","深度 学习 是 人工智能 的 重要 组成部分"
]# 分词
tokenized_corpus = [list(jieba.cut(sentence)) for sentence in corpus]# 构建 n-grams
def generate_ngrams(words, n=3):ngrams = []for word in words:ngrams += [word[i:i + n] for i in range(len(word) - n + 1)]return ngrams# 生成 n-grams 词表
all_ngrams = set()
for sentence in tokenized_corpus:for word in sentence:all_ngrams.update(generate_ngrams(word))# 构建词汇表
vocab = set(word for sentence in tokenized_corpus for word in sentence) | all_ngrams
word2idx = {word: idx for idx, word in enumerate(vocab)}
idx2word = {idx: word for word, idx in word2idx.items()}# 构建训练数据(CBOW 方式)
window_size = 2
data = []for sentence in tokenized_corpus:indices = [word2idx[word] for word in sentence]for center_idx in range(len(indices)):context = []for offset in range(-window_size, window_size + 1):context_idx = center_idx + offsetif 0 <= context_idx < len(indices) and context_idx != center_idx:context.append(indices[context_idx])if context:data.append((context, indices[center_idx])) # (上下文, 目标词)# ========== 2. 定义 FastText 模型 ==========
class FastText(nn.Module):def __init__(self, vocab_size, embedding_dim):super(FastText, self).__init__()self.embeddings = nn.Embedding(vocab_size, embedding_dim)self.linear = nn.Linear(embedding_dim, vocab_size)def forward(self, context):context_vec = self.embeddings(context).mean(dim=1) # 平均上下文向量output = self.linear(context_vec)return output# 初始化模型
embedding_dim = 10
model = FastText(len(vocab), embedding_dim)# ========== 3. 训练 FastText ==========
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
num_epochs = 100for epoch in range(num_epochs):total_loss = 0random.shuffle(data)for context, target in data:context = torch.tensor([context], dtype=torch.long)target = torch.tensor([target], dtype=torch.long)optimizer.zero_grad()output = model(context)loss = criterion(output, target)loss.backward()optimizer.step()total_loss += loss.item()if (epoch + 1) % 10 == 0:print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {total_loss:.4f}")# ========== 4. 获取词向量 ==========
word_vectors = model.embeddings.weight.data.numpy()# ========== 5. 计算相似度 ==========
def most_similar(word, top_n=3):if word not in word2idx:return "单词不在词汇表中"word_vec = word_vectors[word2idx[word]].reshape(1, -1)similarities = np.dot(word_vectors, word_vec.T).squeeze()similar_idx = similarities.argsort()[::-1][1:top_n + 1]return [(idx2word[idx], similarities[idx]) for idx in similar_idx]# 测试
test_words = ["深度", "学习", "人工智能"]
for word in test_words:print(f"【{word}】的相似单词:", most_similar(word))
1. 生成 n-grams
- FastText 处理单词的 子词单元(n-grams)
- 例如
"学习"会生成["学习", "习学", "学"] - 这样即使遇到未登录词也能拆分为 n-grams 计算
2. 训练数据
- 使用 CBOW(上下文预测中心词)
- 窗口大小 = 2,即:
句子: ["深度", "学习", "是", "人工智能"] 示例: (["深度", "是"], "学习")
3. FastText 模型
- 词向量是 n-grams 词向量的平均值
- 计算公式:

- 这样,即使单词没见过,也能用它的 n-grams 计算词向量!
4. 计算相似度
- 用
cosine similarity找出最相似的单词 - FastText 比 Word2Vec 更准确,因为它能利用 n-grams 捕捉词的语义信息
| 特性 | FastText | Word2Vec | GloVe |
|---|---|---|---|
| 原理 | 预测中心词 + n-grams | 预测中心词或上下文 | 统计词共现信息 |
| 未登录词处理 | 可处理 | 无法处理 | 无法处理 |
| 训练速度 | 快 | 快 | 慢 |
| 适合领域 | 中文、罕见词 | 传统 NLP | 大规模数据 |
相关文章:
pytorch基于FastText实现词嵌入
FastText 是 Facebook AI Research 提出的 改进版 Word2Vec,可以: ✅ 利用 n-grams 处理未登录词 比 Word2Vec 更快、更准确 适用于中文等形态丰富的语言 完整的 PyTorch FastText 代码(基于中文语料),包含࿱…...
3D人脸建模:高精度3D人脸扫描设备快速生成真人脸部3D模型
什么是3D人脸建模? 3D人脸建模,即借助特定技术手段,获取人脸三维数据,并构建出能精准呈现人脸形状、纹理等特征的三维模型。这一技术广泛应用于计算机视觉、人机交互、虚拟现实、影视制作等多个领域,为各行业都带来了前所未有的创…...
4.PPT:日月潭景点介绍【18】
目录 NO1、2、3、4 NO5、6、7、8 NO9、10、11、12 表居中或者水平/垂直居中单元格内容居中或者水平/垂直居中 NO1、2、3、4 新建一个空白演示文稿,命名为“PPT.pptx”(“.pptx”为扩展名)新建幻灯片 开始→版式“PPT_素材.doc…...
冷链监控系统
前后端源码 wx :bright12389 冷链系统需求分析 1. 项目背景 冷链系统用于监控和管理冷链物流过程中的环境参数(如温度、湿度),确保货物在运输、存储过程中的质量安全。系统需支持实时监控、历史数据分析、异常告警等功能。 2.…...
VSCode中代码颜色异常
检查右下角语言模式是否是HTML, 如果不是就点击更改为HTML模式即可...
表格标签的使用
一.表格标签 1.1表格标签的作用 用来显示和展示数据,不是用来布局页面的。 1.2表格的基本语法 <table> //用于定义表格标签 <tr> // table row 用于定义表格中的行,必须嵌套在<table> </table>标签中 <td>单元格内的文…...
llama.cpp GGUF 模型格式
llama.cpp GGUF 模型格式 1. Specification1.1. GGUF Naming Convention (命名规则)1.1.1. Validating Above Naming Convention 1.2. File Structure 2. Standardized key-value pairs2.1. General2.1.1. Required2.1.2. General metadata2.1.3. Source metadata 2.2. LLM2.2.…...
嵌入式硬件篇---HAL库内外部时钟主频锁相环分频器
文章目录 前言第一部分:STM32-HAL库HAL库编程优势1.抽象层2.易于上手3.代码可读性4.跨平台性5.维护和升级6.中间件支持 劣势1.性能2.灵活性3.代码大小4.复杂性 直接寄存器操作编程优势1.性能2.灵活性3.代码大小4.学习深度 劣势1.复杂性2.可读性3.可维护性4.跨平台性…...
【IoCDI】_@Bean的参数传递
目录 1. 不创建参数类型的Bean 2. 创建一个与参数同类型同名的Bean 3. 创建多个与参数同类型,其中一个与参数同名的Bean 4. 创建一个与参数同类型不同名的Bean 5. 创建多个与参数同类型但不同名的Bean 对于Bean修饰的方法,也可能需要从外部传参&…...
[特殊字符] ChatGPT-4与4o大比拼
🔍 ChatGPT-4与ChatGPT-4o之间有何不同?让我们一探究竟! 🚀 性能与速度方面,GPT-4-turbo以其优化设计,提供了更快的响应速度和处理性能,非常适合需要即时反馈的应用场景。相比之下,G…...
【模型】Bi-LSTM模型详解
1. 模型架构与计算过程 Bi-LSTM 由两个LSTM层组成,一个是正向LSTM(从前到后处理序列),另一个是反向LSTM(从后到前处理序列)。每个LSTM单元都可以通过门控机制对序列的长期依赖进行建模。 1. 遗忘门 遗忘…...
directx12 3d开发过程中出现的报错 一
报错:“&”要求左值 “& 要求左值” 这个错误通常是因为你在尝试获取一个临时对象或者右值的地址,而 & 运算符只能用于左值(即可以放在赋值语句左边的表达式,代表一个可以被引用的内存位置)。 可能出现错…...
Ubuntu 24.04 安装 Poetry:Python 依赖管理的终极指南
Ubuntu 24.04 安装 Poetry:Python 依赖管理的终极指南 1. 更新系统包列表2. 安装 Poetry方法 1:使用官方安装脚本方法 2:使用 Pipx 安装 3. 配置环境变量4. 验证安装5. 配置 Poetry(可选)设置虚拟环境位置配置镜像源 6…...
读写锁: ReentrantReadWriteLock
在多线程编程场景中,对共享资源的访问控制极为关键。传统的锁机制在同一时刻只允许一个线程访问共享资源,这在读写操作频繁的场景下,会因为读操作相互不影响数据一致性,而造成不必要的性能损耗。ReentrantReadWriteLock࿰…...
上海路网道路 水系铁路绿色住宅地工业用地面图层shp格式arcgis无偏移坐标2023年
标题和描述中提到的资源是关于2023年上海市地理信息数据的集合,主要包含道路、水系、铁路、绿色住宅区以及工业用地的图层数据,这些数据以Shapefile(shp)格式存储,并且是适用于ArcGIS软件的无偏移坐标系统。这个压缩包…...
爬虫学习笔记之Robots协议相关整理
定义 Robots协议也称作爬虫协议、机器人协议,全名为网络爬虫排除标准,用来告诉爬虫和搜索引擎哪些页面可以爬取、哪些不可以。它通常是一个叫做robots.txt的文本文件,一般放在网站的根目录下。 robots.txt文件的样例 对有所爬虫均生效&#…...
Python小游戏29乒乓球
import pygame import sys # 初始化pygame pygame.init() # 屏幕大小 screen_width 800 screen_height 600 screen pygame.display.set_mode((screen_width, screen_height)) pygame.display.set_caption("打乒乓球") # 颜色定义 WHITE (255, 255, 255) BLACK (…...
220.存在重复元素③
目录 一、题目二、思路三、解法四、收获 一、题目 给你一个整数数组 nums 和两个整数 indexDiff 和 valueDiff 。 找出满足下述条件的下标对 (i, j): i ! j, abs(i - j) < indexDiff abs(nums[i] - nums[j]) < valueDiff 如果存在,返回 true &a…...
使用 Go 语言调用 DeepSeek API:完整指南
引言 DeepSeek 是一个强大的 AI 模型服务平台,本文将详细介绍如何使用 Go 语言调用 DeepSeek API,实现流式输出和对话功能。 Deepseek的api因为被功击已不能用,本文以 DeepSeek:https://cloud.siliconflow.cn/i/vnCCfVaQ 为例子进…...
AJAX笔记原理篇
黑马程序员视频地址: AJAX-Day03-01.XMLHttpRequest_基本使用https://www.bilibili.com/video/BV1MN411y7pw?vd_source0a2d366696f87e241adc64419bf12cab&spm_id_from333.788.videopod.episodes&p33https://www.bilibili.com/video/BV1MN411y7pw?vd_sour…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
