pytorch基于FastText实现词嵌入
FastText 是 Facebook AI Research 提出的 改进版 Word2Vec,可以: ✅ 利用 n-grams 处理未登录词
比 Word2Vec 更快、更准确
适用于中文等形态丰富的语言
完整的 PyTorch FastText 代码(基于中文语料),包含:
- 数据预处理(分词 + n-grams)
- 模型定义
- 训练
- 测试
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import jieba
from collections import Counter
import random# ========== 1. 数据预处理 ==========
corpus = ["我们 喜欢 深度 学习","自然 语言 处理 是 有趣 的","人工智能 改变 了 世界","深度 学习 是 人工智能 的 重要 组成部分"
]# 分词
tokenized_corpus = [list(jieba.cut(sentence)) for sentence in corpus]# 构建 n-grams
def generate_ngrams(words, n=3):ngrams = []for word in words:ngrams += [word[i:i + n] for i in range(len(word) - n + 1)]return ngrams# 生成 n-grams 词表
all_ngrams = set()
for sentence in tokenized_corpus:for word in sentence:all_ngrams.update(generate_ngrams(word))# 构建词汇表
vocab = set(word for sentence in tokenized_corpus for word in sentence) | all_ngrams
word2idx = {word: idx for idx, word in enumerate(vocab)}
idx2word = {idx: word for word, idx in word2idx.items()}# 构建训练数据(CBOW 方式)
window_size = 2
data = []for sentence in tokenized_corpus:indices = [word2idx[word] for word in sentence]for center_idx in range(len(indices)):context = []for offset in range(-window_size, window_size + 1):context_idx = center_idx + offsetif 0 <= context_idx < len(indices) and context_idx != center_idx:context.append(indices[context_idx])if context:data.append((context, indices[center_idx])) # (上下文, 目标词)# ========== 2. 定义 FastText 模型 ==========
class FastText(nn.Module):def __init__(self, vocab_size, embedding_dim):super(FastText, self).__init__()self.embeddings = nn.Embedding(vocab_size, embedding_dim)self.linear = nn.Linear(embedding_dim, vocab_size)def forward(self, context):context_vec = self.embeddings(context).mean(dim=1) # 平均上下文向量output = self.linear(context_vec)return output# 初始化模型
embedding_dim = 10
model = FastText(len(vocab), embedding_dim)# ========== 3. 训练 FastText ==========
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
num_epochs = 100for epoch in range(num_epochs):total_loss = 0random.shuffle(data)for context, target in data:context = torch.tensor([context], dtype=torch.long)target = torch.tensor([target], dtype=torch.long)optimizer.zero_grad()output = model(context)loss = criterion(output, target)loss.backward()optimizer.step()total_loss += loss.item()if (epoch + 1) % 10 == 0:print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {total_loss:.4f}")# ========== 4. 获取词向量 ==========
word_vectors = model.embeddings.weight.data.numpy()# ========== 5. 计算相似度 ==========
def most_similar(word, top_n=3):if word not in word2idx:return "单词不在词汇表中"word_vec = word_vectors[word2idx[word]].reshape(1, -1)similarities = np.dot(word_vectors, word_vec.T).squeeze()similar_idx = similarities.argsort()[::-1][1:top_n + 1]return [(idx2word[idx], similarities[idx]) for idx in similar_idx]# 测试
test_words = ["深度", "学习", "人工智能"]
for word in test_words:print(f"【{word}】的相似单词:", most_similar(word))
1. 生成 n-grams
- FastText 处理单词的 子词单元(n-grams)
- 例如
"学习"
会生成["学习", "习学", "学"]
- 这样即使遇到未登录词也能拆分为 n-grams 计算
2. 训练数据
- 使用 CBOW(上下文预测中心词)
- 窗口大小 = 2,即:
句子: ["深度", "学习", "是", "人工智能"] 示例: (["深度", "是"], "学习")
3. FastText 模型
- 词向量是 n-grams 词向量的平均值
- 计算公式:
- 这样,即使单词没见过,也能用它的 n-grams 计算词向量!
4. 计算相似度
- 用
cosine similarity
找出最相似的单词 - FastText 比 Word2Vec 更准确,因为它能利用 n-grams 捕捉词的语义信息
特性 | FastText | Word2Vec | GloVe |
---|---|---|---|
原理 | 预测中心词 + n-grams | 预测中心词或上下文 | 统计词共现信息 |
未登录词处理 | 可处理 | 无法处理 | 无法处理 |
训练速度 | 快 | 快 | 慢 |
适合领域 | 中文、罕见词 | 传统 NLP | 大规模数据 |
相关文章:

pytorch基于FastText实现词嵌入
FastText 是 Facebook AI Research 提出的 改进版 Word2Vec,可以: ✅ 利用 n-grams 处理未登录词 比 Word2Vec 更快、更准确 适用于中文等形态丰富的语言 完整的 PyTorch FastText 代码(基于中文语料),包含࿱…...

3D人脸建模:高精度3D人脸扫描设备快速生成真人脸部3D模型
什么是3D人脸建模? 3D人脸建模,即借助特定技术手段,获取人脸三维数据,并构建出能精准呈现人脸形状、纹理等特征的三维模型。这一技术广泛应用于计算机视觉、人机交互、虚拟现实、影视制作等多个领域,为各行业都带来了前所未有的创…...

4.PPT:日月潭景点介绍【18】
目录 NO1、2、3、4 NO5、6、7、8 NO9、10、11、12 表居中或者水平/垂直居中单元格内容居中或者水平/垂直居中 NO1、2、3、4 新建一个空白演示文稿,命名为“PPT.pptx”(“.pptx”为扩展名)新建幻灯片 开始→版式“PPT_素材.doc…...

冷链监控系统
前后端源码 wx :bright12389 冷链系统需求分析 1. 项目背景 冷链系统用于监控和管理冷链物流过程中的环境参数(如温度、湿度),确保货物在运输、存储过程中的质量安全。系统需支持实时监控、历史数据分析、异常告警等功能。 2.…...

VSCode中代码颜色异常
检查右下角语言模式是否是HTML, 如果不是就点击更改为HTML模式即可...

表格标签的使用
一.表格标签 1.1表格标签的作用 用来显示和展示数据,不是用来布局页面的。 1.2表格的基本语法 <table> //用于定义表格标签 <tr> // table row 用于定义表格中的行,必须嵌套在<table> </table>标签中 <td>单元格内的文…...

llama.cpp GGUF 模型格式
llama.cpp GGUF 模型格式 1. Specification1.1. GGUF Naming Convention (命名规则)1.1.1. Validating Above Naming Convention 1.2. File Structure 2. Standardized key-value pairs2.1. General2.1.1. Required2.1.2. General metadata2.1.3. Source metadata 2.2. LLM2.2.…...
嵌入式硬件篇---HAL库内外部时钟主频锁相环分频器
文章目录 前言第一部分:STM32-HAL库HAL库编程优势1.抽象层2.易于上手3.代码可读性4.跨平台性5.维护和升级6.中间件支持 劣势1.性能2.灵活性3.代码大小4.复杂性 直接寄存器操作编程优势1.性能2.灵活性3.代码大小4.学习深度 劣势1.复杂性2.可读性3.可维护性4.跨平台性…...

【IoCDI】_@Bean的参数传递
目录 1. 不创建参数类型的Bean 2. 创建一个与参数同类型同名的Bean 3. 创建多个与参数同类型,其中一个与参数同名的Bean 4. 创建一个与参数同类型不同名的Bean 5. 创建多个与参数同类型但不同名的Bean 对于Bean修饰的方法,也可能需要从外部传参&…...
[特殊字符] ChatGPT-4与4o大比拼
🔍 ChatGPT-4与ChatGPT-4o之间有何不同?让我们一探究竟! 🚀 性能与速度方面,GPT-4-turbo以其优化设计,提供了更快的响应速度和处理性能,非常适合需要即时反馈的应用场景。相比之下,G…...

【模型】Bi-LSTM模型详解
1. 模型架构与计算过程 Bi-LSTM 由两个LSTM层组成,一个是正向LSTM(从前到后处理序列),另一个是反向LSTM(从后到前处理序列)。每个LSTM单元都可以通过门控机制对序列的长期依赖进行建模。 1. 遗忘门 遗忘…...
directx12 3d开发过程中出现的报错 一
报错:“&”要求左值 “& 要求左值” 这个错误通常是因为你在尝试获取一个临时对象或者右值的地址,而 & 运算符只能用于左值(即可以放在赋值语句左边的表达式,代表一个可以被引用的内存位置)。 可能出现错…...
Ubuntu 24.04 安装 Poetry:Python 依赖管理的终极指南
Ubuntu 24.04 安装 Poetry:Python 依赖管理的终极指南 1. 更新系统包列表2. 安装 Poetry方法 1:使用官方安装脚本方法 2:使用 Pipx 安装 3. 配置环境变量4. 验证安装5. 配置 Poetry(可选)设置虚拟环境位置配置镜像源 6…...
读写锁: ReentrantReadWriteLock
在多线程编程场景中,对共享资源的访问控制极为关键。传统的锁机制在同一时刻只允许一个线程访问共享资源,这在读写操作频繁的场景下,会因为读操作相互不影响数据一致性,而造成不必要的性能损耗。ReentrantReadWriteLock࿰…...
上海路网道路 水系铁路绿色住宅地工业用地面图层shp格式arcgis无偏移坐标2023年
标题和描述中提到的资源是关于2023年上海市地理信息数据的集合,主要包含道路、水系、铁路、绿色住宅区以及工业用地的图层数据,这些数据以Shapefile(shp)格式存储,并且是适用于ArcGIS软件的无偏移坐标系统。这个压缩包…...

爬虫学习笔记之Robots协议相关整理
定义 Robots协议也称作爬虫协议、机器人协议,全名为网络爬虫排除标准,用来告诉爬虫和搜索引擎哪些页面可以爬取、哪些不可以。它通常是一个叫做robots.txt的文本文件,一般放在网站的根目录下。 robots.txt文件的样例 对有所爬虫均生效&#…...
Python小游戏29乒乓球
import pygame import sys # 初始化pygame pygame.init() # 屏幕大小 screen_width 800 screen_height 600 screen pygame.display.set_mode((screen_width, screen_height)) pygame.display.set_caption("打乒乓球") # 颜色定义 WHITE (255, 255, 255) BLACK (…...

220.存在重复元素③
目录 一、题目二、思路三、解法四、收获 一、题目 给你一个整数数组 nums 和两个整数 indexDiff 和 valueDiff 。 找出满足下述条件的下标对 (i, j): i ! j, abs(i - j) < indexDiff abs(nums[i] - nums[j]) < valueDiff 如果存在,返回 true &a…...
使用 Go 语言调用 DeepSeek API:完整指南
引言 DeepSeek 是一个强大的 AI 模型服务平台,本文将详细介绍如何使用 Go 语言调用 DeepSeek API,实现流式输出和对话功能。 Deepseek的api因为被功击已不能用,本文以 DeepSeek:https://cloud.siliconflow.cn/i/vnCCfVaQ 为例子进…...

AJAX笔记原理篇
黑马程序员视频地址: AJAX-Day03-01.XMLHttpRequest_基本使用https://www.bilibili.com/video/BV1MN411y7pw?vd_source0a2d366696f87e241adc64419bf12cab&spm_id_from333.788.videopod.episodes&p33https://www.bilibili.com/video/BV1MN411y7pw?vd_sour…...

idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...

HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...

Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...