给AI用工具的能力——Agent
ReAct框架:
Reason + Action,推理与行动结合
可以借助思维链,用小样本提示展示给模型一个ReAct框架

推理:针对问题或上一步观察的思考
行动:基于推理,与外部环境的一些交互(调用外部工具,比如搜索引擎、代码解释器等,也可以自定义工具)
观察:对行动得到的结果进行查看
agent(智能体、代理):
能理解用户查询或指令,进行推理并执行特定任务,最后输出响应。
三要素:
模型(agent的大脑)
工具列表
提示词(告诉模型要遵循ReAct框架,以及可以使用的工具有哪些)
1、temperature=0:因为不希望模型太有创造力,而是在后序能严格按照ReAct框架进行输出。
2、自定义工具:
需继承自BaseTool类,实际调用_run方法来使用工具。
记得把工具放进tools列表里。
tools = [ TextLengthTool() ]
3、提示模板可以在langchain hub上找
langchain hub:用于管理和共享Langchain相关资源的在线平台
比如要使用ReAct,可以用里面名为structured-chat-agent的提示模板。
pip install langchainhub(才能从该hub拉取内容)
from langchain import hub
prompt = hub.pull("hwchase17/structured - chat - agen") 参数为要拉取的提示词在langchain hub上的路径
返回值类型是ChatPromptTemplate。内容就是让模型遵循ReAct,并把工具介绍作为变量。
如何使用?
准备好三要素后,


1、除了agent,实际执行的叫agent executor(agent执行器),
在agent中传入tools只是为了让agent知道有哪些工具可以使用,发出指令;
agent执行器才是实际调用工具的那个,所以它也要能访问tools。
2、如果想连续对话,需要指定memory参数。
注意:memory_key要为"chat_history",因为提示模板里记忆的变量名叫chat_history。
3、handle_parsing_errors = True,当agent在解析工具输出、生成回复等过程中遇到解析错误时,Agent Executor会尝试采取措施处理错误,而不是让程序直接终止。此处表示如果模型没有按ReAct框架输出时,agent执行器会把错误作为观察返回给模型。
4、verbose = True:以详细模式运行。agent执行器被调用后不是直接返回最终结果,而是还返回具体行动过程。默认为False。
5、
AgentExecutor像是一个协调者,它会将用户输入(input)、工具调用结果以及对话内存(memory)等信息整合处理,并按照agent的决策机制所要求的格式和方式,把输入数据传递给agent,以便agent基于此进行决策和规划。这样的设计实现了职责分离,agent专注于决策规划,AgentExecutor负责执行和信息整合传递等工作 。所以把input和memory传给agent executor而不是agent。
6、最后调用agent_executor.invoke方法,参数是一个字典,含键值" input "。
更多现成agent执行器:
PAL(Program - aided Language Models):程序辅助语言模型,一种将自然语言处理与编程能力相结合以解决复杂问题的 AI 系统。

python_agent
比如可以让AI生成做计算的代码,借助Python解释器,算出最终答案。(即Agent生成代码后,再指示Agent Executor调用相应工具来执行代码。为什么是Agent生成代码?因为懂代码知识的是模型。)
pip install langchain_experimental
from langchain_experimental.tools import PythonREPLTool(Python交互式解释器,可以用于执行Python命令)
from langchain_experimental.agents.agent_toolkits import create_python_agent(LangChain 中用于创建专门处理 Python 相关任务的智能体执行器的函数)

1、为什么不用显式传入提示模板?
因为create_python_agent函数通常有内置的默认提示模板。
2、在
create_python_agent函数的内部创建了智能体(agent)。
create_python_agent函数会根据传入的语言模型(如ChatOpenAI对象)、工具(如PythonREPLTool)等参数,按照 LangChain 内部的逻辑和机制,构建出一个适合处理 Python 相关任务的智能体。之后,该函数会基于创建好的智能体等信息,进一步实例化并返回AgentExecutor,由AgentExecutor来负责执行智能体的决策等操作 。3、不直接支持handle_parsing_errors参数,但是可以把它放进更多参数里,作为键值。
csv_agent
csv(Comma - Separated Values,逗号分隔值),一种常见的用于储存数据的纯文本格式。
注意是英文逗号。可以用excel打开csv文件,是表格的形式。

pip install pandas
pip install tabulate(因为CSV agent底层会用到Pandas库和Tabulate库)

内置默认提示模板:


1、为什么create_csv_agent没有tools参数,而create_python_agent有agent参数?
create_csv_agent:
内部已集成专门针对 CSV 文件处理的工具,用户无需额外提供工具列表。
专注于 CSV 文件处理任务,功能相对单一和固定,适用于仅需处理 CSV 文件相关任务的场景。
create_python_agent:
本身不预设特定工具,而是要求用户根据具体任务需求传入所需工具。
因为 Python 应用场景广泛,从简单的代码执行、文件操作到复杂的网络交互、数据处理等,不同任务所需工具差异很大,所以需要用户灵活配置工具,以满足多样化的 Python 任务需求。
2、实际上也是通过执行Python代码得到的答案。
让工具箱集成多种工具:
现有自定义工具,和现成的agent执行器(需要转换成Tool类型)
func参数赋值为使用工具时调用的函数名或方法名,因为使用agent执行器时,调用的是invoke方法,所以把执行器的invoke方法作为参数传入即可。
(函数:一段独立的代码块,用于完成特定的任务。它可以在模块的顶层定义,不依赖于任何特定的类或对象,是全局范围内可调用的代码单元。
方法:与类或对象相关联的函数,定义在类的内部,是类的一部分。它通常用于操作对象的属性或执行与对象相关的特定行为。如list.append()是列表类的一个方法。)


相关文章:
给AI用工具的能力——Agent
ReAct框架: Reason Action,推理与行动结合 可以借助思维链,用小样本提示展示给模型一个ReAct框架 推理:针对问题或上一步观察的思考 行动:基于推理,与外部环境的一些交互(调用外部工具&…...
Jupyter Lab的使用
Lab与Notebook的区别: Jupyter Lab和Jupyter notebook有什么区别,这里找到一篇博客不过我没细看, Jupyter Lab和Jupyter Notebook的区别 - codersgl - 博客园 使用起来Lab就是一个更齐全、功能更高级的notebook, 启用滚动输出: 有时候一个…...
【从零开始的LeetCode-算法】922. 按奇偶排序数组 II
给定一个非负整数数组 nums, nums 中一半整数是 奇数 ,一半整数是 偶数 。 对数组进行排序,以便当 nums[i] 为奇数时,i 也是 奇数 ;当 nums[i] 为偶数时, i 也是 偶数 。 你可以返回 任何满足上述条件的…...
RabbitMQ深度探索:前置知识
消息中间件: 消息中间件基于队列模式实现异步 / 同步传输数据作用:可以实现支撑高并发、异步解耦、流量削峰、降低耦合 传统的 HTTP 请求存在的缺点: HTTP 请求基于响应的模型,在高并发的情况下,客户端发送大量的请求…...
『 C++ 』中不可重写虚函数的实用案例
文章目录 框架设计:保障核心逻辑稳定避免误操作:防止逻辑混乱确保接口一致:库与API设计 在C编程里,用final关键字修饰、不允许被继承(重写)的虚函数其实很有用。接下来我就结合实际案例,给大家讲…...
Redis - String相关命令
目录 setgetmsetmgetsetnx、setex、psetexincr、incrby、decr、decrby、incrbyfloatappendgetrangesetrangestrlen字符串类型编码方式总结 Redis - String Redis存储的字符串,是直接按二进制方式存储,不会做任何编码转换,存的是什么ÿ…...
pytorch基于FastText实现词嵌入
FastText 是 Facebook AI Research 提出的 改进版 Word2Vec,可以: ✅ 利用 n-grams 处理未登录词 比 Word2Vec 更快、更准确 适用于中文等形态丰富的语言 完整的 PyTorch FastText 代码(基于中文语料),包含࿱…...
3D人脸建模:高精度3D人脸扫描设备快速生成真人脸部3D模型
什么是3D人脸建模? 3D人脸建模,即借助特定技术手段,获取人脸三维数据,并构建出能精准呈现人脸形状、纹理等特征的三维模型。这一技术广泛应用于计算机视觉、人机交互、虚拟现实、影视制作等多个领域,为各行业都带来了前所未有的创…...
4.PPT:日月潭景点介绍【18】
目录 NO1、2、3、4 NO5、6、7、8 NO9、10、11、12 表居中或者水平/垂直居中单元格内容居中或者水平/垂直居中 NO1、2、3、4 新建一个空白演示文稿,命名为“PPT.pptx”(“.pptx”为扩展名)新建幻灯片 开始→版式“PPT_素材.doc…...
冷链监控系统
前后端源码 wx :bright12389 冷链系统需求分析 1. 项目背景 冷链系统用于监控和管理冷链物流过程中的环境参数(如温度、湿度),确保货物在运输、存储过程中的质量安全。系统需支持实时监控、历史数据分析、异常告警等功能。 2.…...
VSCode中代码颜色异常
检查右下角语言模式是否是HTML, 如果不是就点击更改为HTML模式即可...
表格标签的使用
一.表格标签 1.1表格标签的作用 用来显示和展示数据,不是用来布局页面的。 1.2表格的基本语法 <table> //用于定义表格标签 <tr> // table row 用于定义表格中的行,必须嵌套在<table> </table>标签中 <td>单元格内的文…...
llama.cpp GGUF 模型格式
llama.cpp GGUF 模型格式 1. Specification1.1. GGUF Naming Convention (命名规则)1.1.1. Validating Above Naming Convention 1.2. File Structure 2. Standardized key-value pairs2.1. General2.1.1. Required2.1.2. General metadata2.1.3. Source metadata 2.2. LLM2.2.…...
嵌入式硬件篇---HAL库内外部时钟主频锁相环分频器
文章目录 前言第一部分:STM32-HAL库HAL库编程优势1.抽象层2.易于上手3.代码可读性4.跨平台性5.维护和升级6.中间件支持 劣势1.性能2.灵活性3.代码大小4.复杂性 直接寄存器操作编程优势1.性能2.灵活性3.代码大小4.学习深度 劣势1.复杂性2.可读性3.可维护性4.跨平台性…...
【IoCDI】_@Bean的参数传递
目录 1. 不创建参数类型的Bean 2. 创建一个与参数同类型同名的Bean 3. 创建多个与参数同类型,其中一个与参数同名的Bean 4. 创建一个与参数同类型不同名的Bean 5. 创建多个与参数同类型但不同名的Bean 对于Bean修饰的方法,也可能需要从外部传参&…...
[特殊字符] ChatGPT-4与4o大比拼
🔍 ChatGPT-4与ChatGPT-4o之间有何不同?让我们一探究竟! 🚀 性能与速度方面,GPT-4-turbo以其优化设计,提供了更快的响应速度和处理性能,非常适合需要即时反馈的应用场景。相比之下,G…...
【模型】Bi-LSTM模型详解
1. 模型架构与计算过程 Bi-LSTM 由两个LSTM层组成,一个是正向LSTM(从前到后处理序列),另一个是反向LSTM(从后到前处理序列)。每个LSTM单元都可以通过门控机制对序列的长期依赖进行建模。 1. 遗忘门 遗忘…...
directx12 3d开发过程中出现的报错 一
报错:“&”要求左值 “& 要求左值” 这个错误通常是因为你在尝试获取一个临时对象或者右值的地址,而 & 运算符只能用于左值(即可以放在赋值语句左边的表达式,代表一个可以被引用的内存位置)。 可能出现错…...
Ubuntu 24.04 安装 Poetry:Python 依赖管理的终极指南
Ubuntu 24.04 安装 Poetry:Python 依赖管理的终极指南 1. 更新系统包列表2. 安装 Poetry方法 1:使用官方安装脚本方法 2:使用 Pipx 安装 3. 配置环境变量4. 验证安装5. 配置 Poetry(可选)设置虚拟环境位置配置镜像源 6…...
读写锁: ReentrantReadWriteLock
在多线程编程场景中,对共享资源的访问控制极为关键。传统的锁机制在同一时刻只允许一个线程访问共享资源,这在读写操作频繁的场景下,会因为读操作相互不影响数据一致性,而造成不必要的性能损耗。ReentrantReadWriteLock࿰…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
API网关Kong的鉴权与限流:高并发场景下的核心实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中,API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关,Kong凭借其插件化架构…...





