基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
目录
1.算法仿真效果
2.算法涉及理论知识概要
3.MATLAB核心程序
4.完整算法代码文件获得
1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):
GA优化曲线:
优化前后星座图对比
优化前后误码率对比
仿真操作步骤可参考程序配套的操作视频。
2.算法涉及理论知识概要
256QAM 是一种高阶调制方式,星座图中有256个星座点,每个星座点对应 8 比特信息。传统的 256QAM 采用均匀分布。通过改变改变星座图不同位置符号出现的概率,让外圈星座点出现频率降低,有利于减小平均功率,相当于增加了最小欧氏距离,从而有更好的传输性能。这就是我们所说的概率星座整形(PCS)了。它究竟有什么好处呢?
1. 具有整形增益。
2. 有望达到更高的传输容量,显著提升频谱效率。
3. 传输速率可以灵活调整,以完美适配不同的传输信道。
4. 无须多种支持多种QAM映射,仅使用方形QAM调制,需调整整形系数
PCS的关键在于如何对均匀概率的输出映射成非均匀概率幅度分布,而且该概率分布还应该是最优的。理论上可以证明Maxwell-Boltzman分布对于方形QAM整形是最优的概率分布。概率星座整形一般使用如下的公式完成:
参数v为整形因子。在本课题中,将通过GA优化算法,搜索最佳的参数v,进一步提升概率整形后的系统性能。以 256QAM 的误码率(BER)作为适应度函数。误码率越低,表明该概率整形因子 对应的星座点概率分布越优。在实际计算时,可通过蒙特卡罗仿真来估计误码率。具体步骤为:依据当前的 计算每个星座点的发送概率,生成大量发送符号,经过加性高斯白噪声(AWGN)信道传输,接收符号并进行解调,统计错误比特数,进而计算误码率。
通过GA算法,获得最优的参数v,以降低256QAM 的误码率。
3.MATLAB核心程序
................................................................
MAXGEN = 15;
NIND = 20;
Nums = 1;
Chrom = crtbp(NIND,Nums*10);%sh
Areas = [];
for i = 1:NumsAreas = [Areas,[0;0.25]];% 优化概率整形参数v
end
FieldD = [rep([10],[1,Nums]);Areas;rep([0;0;0;0],[1,Nums])];gen = 0;
for a=1:1:NIND %计算对应的目标值X = rand(1,Nums)/10;%初始值[epls] = func_obj(X);E = epls;Js(a,1) = E;
endObjv = (Js+eps);
gen = 0; %%
while gen < MAXGEN genPe0 = 0.998;pe1 = 0.002; FitnV=ranking(Objv); Selch=select('sus',Chrom,FitnV); Selch=recombin('xovsp', Selch,Pe0); Selch=mut( Selch,pe1); phen1=bs2rv(Selch,FieldD); for a=1:1:NIND X = phen1(a,:);%计算对应的目标值[epls]= func_obj(X);E = epls;JJ(a,1) = E;end Objvsel=(JJ); [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel); gen=gen+1; %保存参数收敛过程和误差收敛过程以及函数值拟合结论Error(gen) = mean(JJ) ;[V,I] = min(JJ);VVV(gen) = phen1(I,:);VVV2(gen) = mean2(phen1) ;
end figure;
plot(Error,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');[V,I] = min(JJ);
VV = phen1(I,:);save GA_OPT.mat Error VV
0X_077m
4.完整算法代码文件获得
V
相关文章:

基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
目录 1.算法仿真效果 2.算法涉及理论知识概要 3.MATLAB核心程序 4.完整算法代码文件获得 1.算法仿真效果 matlab2022a仿真结果如下(完整代码运行后无水印): GA优化曲线: 优化前后星座图对比 优化前后误码率对比 仿真操作步骤…...
JavaScript系列(57)--工程化实践详解
JavaScript工程化实践详解 🏗️ 今天,让我们深入探讨JavaScript的工程化实践。良好的工程化实践对于构建可维护、高质量的JavaScript项目至关重要。 工程化基础概念 🌟 💡 小知识:JavaScript工程化是指在JavaScript开…...

Linux-CentOS的yum源
1、什么是yum yum是CentOS的软件仓库管理工具。 2、yum的仓库 2.1、yum的远程仓库源 2.1.1、国内仓库 国内较知名的网络源(aliyun源,163源,sohu源,知名大学开源镜像等) 阿里源:https://opsx.alibaba.com/mirror 网易源:http://mirrors.1…...
【大数据技术】案例03:用户行为日志分析(python+hadoop+mapreduce+yarn+hive)
用户行为日志分析(python+hadoop+mapreduce+yarn+hive) 搭建完全分布式高可用大数据集群(VMware+CentOS+FinalShell) 搭建完全分布式高可用大数据集群(Hadoop+MapReduce+Yarn) 本机PyCharm远程连接虚拟机Python 搭建完全分布式高可用大数据集群(MySQL+Hive)...
LeetCode 0680.验证回文串 II:两侧向中间,不同就试删
【LetMeFly】680.验证回文串 II:两侧向中间,不同就试删 力扣题目链接:https://leetcode.cn/problems/valid-palindrome-ii/ 给你一个字符串 s,最多 可以从中删除一个字符。 请你判断 s 是否能成为回文字符串:如果能…...

第二十章 存储函数
目录 一、概述 二、语法 三、示例 一、概述 前面章节中,我们详细讲解了MySQL中的存储过程,掌握了存储过程之后,学习存储函数则肥仓简单,存储函数其实是一种特殊的存储过程,也就是有返回值的存储过程。存储函数的参数…...

架构规划之任务边界划分过程中承接分配
架构师在边界划分的过程中需要做什么事情呢?接下来,我们会讨论一些关于任务分配的 基础假设,以及由这些基础假设而带来的决策路径。 所谓任务边界划分,就是判定某个任务在多个承接方中,应该归属到哪个承接方的过程。…...

【C++】线程池实现
目录 一、线程池简介线程池的核心组件实现步骤 二、C11实现线程池源码 三、线程池源码解析1. 成员变量2. 构造函数2.1 线程初始化2.2 工作线程逻辑 3. 任务提交(enqueue方法)3.1 方法签名3.2 任务封装3.3 任务入队 4. 析构函数4.1 停机控制 5. 关键技术点解析5.1 完美转发实现5…...
vsnprintf的概念和使用案例
vsnprintf 是 C/C 标准库中用于格式化字符串的安全函数,属于 <stdio.h>(C)或 <cstdio>(C)头文件。它是 snprintf 的可变参数版本(v 表示 va_list),允许通过 va_list 处理…...

解读隐私保护工具 Fluidkey:如何畅游链上世界而不暴露地址?
作者:Techub 独家解读 撰文:Tia,Techub News 隐私不只是个人权利的象征,更是我们迈向透明、信任未来的重要过渡桥梁。如果你还未意识到隐私的重要性,推荐阅读 KeyMapDAO 的文章《「被出卖的自由」:我到底该…...

Linux环境Kanass安装配置简明教程
Kanass是一款国产开源免费的项目管理软件,本文将介绍如何快速在linux centos环境下安装配置,以快速上手。 1. 安装 以下以linux centos7下安装为例。 下载,下载地址:Kanass - 下载,下载Linux安装包如tiklab-kanass-1.0.4.rpm&am…...

数据分析常用的AI工具
数据分析领域中常用的AI工具种类繁多,涵盖了从数据处理、分析到可视化和预测的各个环节。以下是一些常见且广泛应用的AI数据分析工具及其特点: 1. 数据处理与清洗工具 Python库:如PandasAI,集成了生成式AI能力,支持自…...
项目中常用中间件有哪些?分别起什么作用?
在项目开发中,常用的中间件包括消息中间件、缓存中间件、数据库中间件等,以下是一些常见的中间件及其作用: 消息中间件 Kafka:一般用于处理大规模的消息数据,具有高吞吐量、低延迟的特点,适用于日志收集、…...

kaggle视频行为分析1st and Future - Player Contact Detection
这次比赛的目标是检测美式橄榄球NFL比赛中球员经历的外部接触。您将使用视频和球员追踪数据来识别发生接触的时刻,以帮助提高球员的安全。两种接触,一种是人与人的,另一种是人与地面,不包括脚底和地面的,跟我之前做的这…...
1. junit5介绍
JUnit 5 是 Java 生态中最流行的单元测试框架,由 JUnit Platform、JUnit Jupiter 和 JUnit Vintage 三个子项目组成。以下是 JUnit 5 的全面使用指南及示例: 一、环境配置 1. Maven 依赖 <dependency><groupId>org.junit.jupiter</grou…...

(脚本学习)BUU18 [CISCN2019 华北赛区 Day2 Web1]Hack World1
自用 题目 考虑是不是布尔盲注,如何测试:用"1^1^11 1^0^10,就像是真真真等于真,真假真等于假"这个测试 SQL布尔盲注脚本1 import requestsurl "http://8e4a9bf2-c055-4680-91fd-5b969ebc209e.node5.buuoj.cn…...

Caxa 二次开发 ObjectCRX-1 踩坑:环境配置以及 Helloworld
绝了,坑是真 nm 的多,官方给的文档里到处都是坑。 用的环境 ObjectCRX,以下简称 objcrx。 #1 安装环境 & 参考文档的大坑 #1.1 Caxa 提供的文档和环境安装包 首先一定要跟 Caxa 对应版本的帮助里提供的 ObjectCRX 安装器 (wizard) 匹配…...

【自然语言处理(NLP)】生成词向量:GloVe(Global Vectors for Word Representation)原理及应用
文章目录 介绍GloVe 介绍核心思想共现矩阵1. 共现矩阵的定义2. 共现概率矩阵的定义3. 共现概率矩阵的意义4. 共现概率矩阵的构建步骤5. 共现概率矩阵的应用6. 示例7. 优缺点优点缺点 **总结** 目标函数训练过程使用预训练的GloVe词向量 优点应用总结 个人主页:道友老…...
bable-预设
babel 有多种预设,最常见的预设是 babel/preset-env,它可以让你使用最新的 JS 语法,而无需针对每种语法转换设置具体的插件。 babel/preset-env 预设 安装 npm i -D babel/preset-env配置 .babelrc 文件 在根目录下新建 .babelrc 文件&a…...

回顾生化之父三上真司的游戏思想
1. 放养式野蛮成长路线,开创生存恐怖类型 三上进入capcom后,没有培训,没有师傅手把手的指导,而是每天摸索写策划书,老员工给出不行的评语后,扔掉旧的重写新的。 然后突然就成为游戏总监,进入开…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...

ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
离线语音识别方案分析
随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...