当前位置: 首页 > news >正文

单细胞-第四节 多样本数据分析,下游画图

文件在单细胞\5_GC_py\1_single_cell\2_plots.Rmd

1.细胞数量条形图

rm(list = ls())
library(Seurat)
load("seu.obj.Rdata")dat = as.data.frame(table(Idents(seu.obj)))
dat$label = paste(dat$Var1,dat$Freq,sep = ":")
head(dat)
library(ggplot2)
library(paletteer)
#View(palettes_d_names)
ggplot(dat,aes(x = Freq,fill = Var1,y = Var1))+scale_fill_paletteer_d("ggsci::category20_d3")+geom_bar(stat = "identity")+theme_bw()+geom_text(aes(x = 0,label = label),hjust = 0)+theme(axis.text.y = element_blank(),   # 隐藏纵坐标刻度文字axis.ticks.y = element_blank(),axis.title.y = element_blank())  # 隐藏纵坐标刻度线

在这里插入图片描述

2.细胞比例条形图

seu.obj$seurat_annotation = seu.obj@active.ident
ggplot(seu.obj@meta.data,aes(orig.ident,fill = seurat_annotation))+geom_bar(position = "fill", alpha = 0.9,width = 0.5)+scale_fill_paletteer_d("ggsci::category20_d3")+theme_classic()+coord_flip()+coord_fixed(ratio = 4) #纵轴长度是横轴的4

在这里插入图片描述

3.小提琴图

load("markers.Rdata")
library(tidyverse)
g = allmarkers %>% group_by(cluster) %>% top_n(1,wt = avg_log2FC) %>% pull(gene)m = as.matrix(seu.obj@assays$RNA@layers$data)
rownames(m) = Features(seu.obj)
colnames(m) = Cells(seu.obj)
vln.df <- m %>%t() %>%as.data.frame()%>%select(g) %>% rownames_to_column("CB") %>% mutate(cluster = seu.obj$seurat_annotation)%>%pivot_longer(cols = 2:(ncol(.)-1),#宽边长names_to = "gene",values_to = "exp") %>% mutate(gene = factor(gene,levels = g))
head(vln.df)
# 自定义颜色
library(paletteer)
my_color = paletteer_d(`"ggsci::category20_d3"`)
my_color = colorRampPalette(my_color)(length(unique(vln.df$cluster)))
# 画图
p1 <- ggplot(vln.df,aes(exp,cluster),color=factor(cluster))+geom_violin(aes(fill=cluster),scale = "width")+scale_fill_manual(values = my_color)+facet_grid(.~gene,scales = "free_y", switch = "x")+scale_x_continuous(expand = c(0,0),position = "top")+theme_bw()+theme(panel.grid = element_blank(),axis.title.x.top = element_blank(),#axis.ticks.x.bottom = element_blank(),axis.text.x.top= element_text(hjust = 1,vjust = NULL,color = "black",size = 7),#axis.title.y.left = element_blank(),#axis.ticks.y.left = element_blank(),#axis.text.y.left = element_blank(),legend.position = "none",panel.spacing.y = unit(0, "cm"),strip.text.y = element_text(angle=0,size = 14,hjust = 0),strip.background.y = element_blank())
p1

在这里插入图片描述

4.气泡图

g = allmarkers %>% group_by(cluster) %>% top_n(5,wt = avg_log2FC) %>% pull(gene) %>% unique()
DotPlot(seu.obj,features = g,cols = "RdYlBu")+RotatedAxis()

在这里插入图片描述

5.GC基因韦恩图

f = read.delim("gcgene.txt",header = F)
k = allmarkers$p_val_adj<0.05 & allmarkers$avg_log2FC>2
table(k)
g = intersect(allmarkers$gene[k],f$V1)
save(g,file = "g.Rdata")
library(tinyarray)
draw_venn(list(pyroptosis = f$V1,marker = unique(allmarkers$gene[k])),"")
ggsave("venn.png")

在这里插入图片描述

m = as.matrix(seu.obj@assays$RNA@layers$data)
rownames(m) = Features(seu.obj)
colnames(m) = Cells(seu.obj)
m = m[g,]
ac = data.frame(row.names = colnames(m),celltype = Idents(seu.obj))
library(dplyr)
ac = arrange(ac,celltype)
m = m[,rownames(ac)]
pheatmap::pheatmap(m,show_colnames = F,cluster_cols = F,cluster_rows = F,scale = "row",breaks = seq(-1.6,3,length.out = 100),annotation_col = ac)

在这里插入图片描述

6.差异焦亡基因富集分析

e = quick_enrich(g,destdir = tempdir())
e[[4]]+e[[3]]

在这里插入图片描述

相关文章:

单细胞-第四节 多样本数据分析,下游画图

文件在单细胞\5_GC_py\1_single_cell\2_plots.Rmd 1.细胞数量条形图 rm(list ls()) library(Seurat) load("seu.obj.Rdata")dat as.data.frame(table(Idents(seu.obj))) dat$label paste(dat$Var1,dat$Freq,sep ":") head(dat) library(ggplot2) lib…...

Linux的循环,bash的循环

Linux的循环,bash的循环 在 Linux 系统中&#xff0c;Bash 循环是最常用的循环实现方式&#xff08;Bash 是 Linux 默认的 Shell&#xff09;&#xff0c;但广义上“Linux 的循环”可能涉及其他 Shell 或编程语言的循环结构。以下是 Bash 循环的详细解析及其在 Linux 环境中的…...

【DeepSeek开发】Python实现股票数据可视化

代码&#xff1a; Github&#xff1a;Python实现股票数据可视化代码https://github.com/magolan2000/Data-visualization/tree/master 软件环境&#xff1a;PyCharm 2022.3.1 数据来源&#xff1a;akshare 最近DeepSeek可谓是热度不断&#xff0c;因此想评判一下DeepSeek的编程…...

华为小米vivo向上,苹果荣耀OPPO向下

日前&#xff0c;Counterpoint发布的手机销量月度报告显示&#xff0c;中国智能手机销量在2024年第四季度同比下降3.2%&#xff0c;成为2024年唯一出现同比下滑的季度。而对于各大智能手机品牌来说&#xff0c;他们的市场份额和格局也在悄然发生变化。 华为逆势向上 在2024年第…...

毕业设计:基于深度学习的高压线周边障碍物自动识别与监测系统

目录 前言 课题背景和意义 实现技术思路 一、算法理论基础 1.1 卷积神经网络 1.2 目标检测算法 1.3 注意力机制 二、 数据集 2.1 数据采集 2.2 数据标注 三、实验及结果分析 3.1 实验环境搭建 3.2 模型训练 3.2 结果分析 最后 前言 &#x1f4c5;大四是整个大学…...

el-table表格点击单元格实现编辑

使用 el-table 和 el-table-column 创建表格。在单元格的默认插槽中&#xff0c;使用 div 显示文本内容&#xff0c;单击时触发编辑功能。使用 el-input 组件在单元格中显示编辑框。data() 方法中定义了 tableData&#xff0c;tabClickIndex: null,tabClickLabel: ,用于判断是否…...

数据结构:时间复杂度

文章目录 为什么需要时间复杂度分析&#xff1f;一、大O表示法&#xff1a;复杂度的语言1.1 什么是大O&#xff1f;1.2 常见复杂度速查表 二、实战分析&#xff1a;解剖C语言代码2.1 循环结构的三重境界单层循环&#xff1a;线性时间双重循环&#xff1a;平方时间动态边界循环&…...

SPI(Serial Peripheral Interface)串行外围设备接口

SPI概述&#xff1a; SPI协议最初由Motorola公司&#xff08;现为NXP Semiconductors的一部分&#xff09;在20世纪80年代中期开发。最初是为了在其68000系列微控制器中实现高速、高效的串行通信。该协议旨在简化微控制器与外围设备之间的数据传输。 1980年代&#xff1a;SPI协…...

Java 8 Stream API

通过 Stream.of 方法直接传入多个元素构成一个流 String[] arr {“a”, “b”, “c”}; Stream.of(arr).forEach(System.out::println); Stream.of(“a”, “b”, “c”).forEach(System.out::println); Stream.of(1, 2, “a”).map(item -> item.getClass().getName()…...

亚博microros小车-原生ubuntu支持系列:21 颜色追踪

背景知识 这个测试例子用到了很多opencv的函数&#xff0c;举个例子。 #cv2.findContours函数来找到二值图像中的轮廓。#参数&#xff1a;#参数1&#xff1a;输 入的二值图像。通常是经过阈值处理后的图像&#xff0c;例如在颜色过滤之后生成的掩码。#参数2(cv2.RETR_EXTERNA…...

GESP6级语法知识(六):(动态规划算法(六)多重背包)

多重背包&#xff08;二维数组&#xff09; #include <iostream> using namespace std; #define N 1005 int Asd[N][N]; //Asd[i][j]表示前 i 个物品&#xff0c;背包容量是 j 的情况下的最大价值。 int Value[N], Vol[N], S[N];int main() {int n, Volume;cin &g…...

MySQL 事务实现原理( 详解 )

MySQL 主要是通过: 锁、Redo Log、Undo Log、MVCC来实现事务 事务的隔离性利用锁机制实现 原子性、一致性和持久性由事务的 redo 日志和undo 日志来保证。 Redo Log(重做日志)&#xff1a;记录事务对数据库的所有修改&#xff0c;在崩溃时恢复未提交的更改&#xff0c;保证事务…...

AI协助探索AI新构型自动化创新的技术实现

一、AI自进化架构的核心范式 1. 元代码生成与模块化重构 - 代码级自编程&#xff1a;基于神经架构搜索的强化学习框架&#xff0c;AI可通过生成元代码模板&#xff08;框架的抽象层定义&#xff09;自动组合功能模块。例如&#xff0c;使用注意力机制作为原子单元&#xff…...

九. Redis 持久化-RDB(详细讲解说明,一个配置一个说明分析,步步讲解到位)

九. Redis 持久化-RDB(详细讲解说明&#xff0c;一个配置一个说明分析&#xff0c;步步讲解到位) 文章目录 九. Redis 持久化-RDB(详细讲解说明&#xff0c;一个配置一个说明分析&#xff0c;步步讲解到位)1. RDB 概述2. RDB 持久化执行流程3. RDB 的详细配置4. RDB 备份&恢…...

mac连接linux服务器

1、mac连接linux服务器 # ssh -p 22 root192.168.1.152、mac指定密码连接linux服务器 (1) 先安装sshpass,下载后解压执行 ./configure && make && makeinstall https://sourceforge.net/projects/sshpass/ (2) 连接linux # sshpass -p \/\\\[\!\\wen12\$ s…...

oracle: 表分区>>范围分区,列表分区,散列分区/哈希分区,间隔分区,参考分区,组合分区,子分区/复合分区/组合分区

分区表 是将一个逻辑上的大表按照特定的规则划分为多个物理上的子表&#xff0c;这些子表称为分区。 分区可以基于不同的维度&#xff0c;如时间、数值范围、字符串值等&#xff0c;将数据分散存储在不同的分区 中&#xff0c;以提高数据管理的效率和查询性能&#xff0c;同时…...

使用Pygame制作“走迷宫”游戏

1. 前言 迷宫游戏是最经典的 2D 游戏类型之一&#xff1a;在一个由墙壁和通道构成的地图里&#xff0c;玩家需要绕过障碍、寻找通路&#xff0c;最终抵达出口。它不但简单易实现&#xff0c;又兼具可玩性&#xff0c;还能在此基础上添加怪物、道具、机关等元素。本篇文章将展示…...

AJAX案例——图片上传个人信息操作

黑马程序员视频地址&#xff1a; AJAX-Day02-11.图片上传https://www.bilibili.com/video/BV1MN411y7pw?vd_source0a2d366696f87e241adc64419bf12cab&spm_id_from333.788.videopod.episodes&p26 图片上传 <!-- 文件选择元素 --><input type"file"…...

Day35-【13003】短文,什么是双端队列?栈和队列的互相模拟,以及解决队列模拟栈时出栈时间开销大的方法

文章目录 第三节进一步讨论栈和队列双端队列栈和队列的相互模拟使用栈来模拟队列类型定义入队出队判空&#xff0c;判满 使用队列来模拟栈类型定义初始化清空操作判空&#xff0c;判满栈长度输出入栈出栈避免出栈时间开销大的方法 第三节进一步讨论栈和队列 双端队列 假设你芷…...

力扣 55. 跳跃游戏

&#x1f517; https://leetcode.cn/problems/jump-game 题目 给一个数组 nums&#xff0c;最开始在 index 0&#xff0c;每次可以跳跃的区间是 0-nums[i]判断是否可以跳到数组末尾 思路 题解是用贪心&#xff0c;实际上模拟也可以过遍历可以到达的下标&#xff0c;判断其可…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了&#xff0c;要么要会员、要么写的乱七八糟。这里我整理一下&#xff0c;把问题说清楚并且给出代码&#xff0c;拿去用就行&#xff0c;照着葫芦画瓢。 问题 在继承QWebEngineView后&#xff0c;重写mousePressEvent或event函数无法捕获鼠标按下事…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...