当前位置: 首页 > news >正文

Hot100之矩阵

73矩阵置零

题目

思路解析

收集0位置所在的行和列

然后该行全部初始化为0

该列全部初始化为0

代码

class Solution {public void setZeroes(int[][] matrix) {int m = matrix.length;int n = matrix[0].length;List<Integer> list1 = new ArrayList<>();List<Integer> list2 = new ArrayList<>();for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {if (matrix[i][j] == 0) {list1.add(i);list2.add(j);}}}for (int temp : list1) {for (int i = 0; i < n; i++) {matrix[temp][i] = 0;}}for (int temp : list2) {for (int i = 0; i < m; i++) {matrix[i][temp] = 0;}}}
}

54螺旋矩阵

题目

思路解析

直接左右下左上

这样子循环遍历就好了

主要注意的是我们的边界处理问题

代码

class Solution {public List<Integer> spiralOrder(int[][] matrix) {List<Integer> ans = new ArrayList<>();if (matrix == null || matrix.length == 0 || matrix[0].length == 0) return ans;int up = 0, down = matrix.length - 1;int left = 0, right = matrix[0].length - 1;while (true) {for (int i = left; i <= right; i++) { // 左->右ans.add(matrix[up][i]);}if (++up > down) break;for (int i = up; i <= down; i++) { // 上->下ans.add(matrix[i][right]);}if (--right < left) break;for (int i = right; i >= left; i--) { // 右->左ans.add(matrix[down][i]);}if (--down < up) break;for (int i = down; i >= up; i--) { // 下->上ans.add(matrix[i][left]);}if (++left > right) break;}return ans;}
}

48旋转图像

题目

思路解析

辅助矩阵

我们clone一个矩阵辅助我们,然后根据公式计算

原地修改

如上图所示,一轮可以完成矩阵 4 个元素的旋转。因而,只要分别以矩阵左上角 1/4 的各元素为起始点执行以上旋转操作,即可完整实现矩阵旋转。

具体来看,当矩阵大小 n 为偶数时,取前 n/2 行、前 n/2 列的元素为起始点;

当矩阵大小 n 为奇数时,取前 n/2 行、前 (n+1)/2 列的元素为起始点

i=0,j=0

i=0,j=1

i=1,j=0

i=1,j=1

代码

辅助矩阵
class Solution {public void rotate(int[][] matrix) {int n = matrix.length;// 深拷贝 matrix -> tmpint[][] tmp = new int[n][];for (int i = 0; i < n; i++)tmp[i] = matrix[i].clone();// 根据元素旋转公式,遍历修改原矩阵 matrix 的各元素for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {matrix[j][n - 1 - i] = tmp[i][j];}}}
}
原地修改
class Solution {public void rotate(int[][] matrix) {int n = matrix.length;for (int i = 0; i < n / 2; i++) {for (int j = 0; j < (n + 1) / 2; j++) {int tmp = matrix[i][j];matrix[i][j] = matrix[n - 1 - j][i];matrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j];matrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i];matrix[j][n - 1 - i] = tmp;}}}
}

240搜索二维矩阵

题目

思路解析

灵神题解-排除法

我们从右上角开始

我们先通过每行最后一个位置来排除行

行排除完之后,我们再根据列最小的位置来排除列

代码

class Solution {public boolean searchMatrix(int[][] matrix, int target) {int i = 0;int j = matrix[0].length - 1; // 从右上角开始while (i < matrix.length && j >= 0) { // 还有剩余元素if (matrix[i][j] == target) {return true; // 找到 target}if (matrix[i][j] < target) {i++; // 这一行剩余元素全部小于 target,排除} else {j--; // 这一列剩余元素全部大于 target,排除}}return false;}
}

相关文章:

Hot100之矩阵

73矩阵置零 题目 思路解析 收集0位置所在的行和列 然后该行全部初始化为0 该列全部初始化为0 代码 class Solution {public void setZeroes(int[][] matrix) {int m matrix.length;int n matrix[0].length;List<Integer> list1 new ArrayList<>();List<…...

Python语言的安全开发

Python语言的安全开发 引言 在信息技术迅速发展的今天&#xff0c;网络安全问题愈发凸显。随着Python语言的广泛应用&#xff0c;尤其是在数据分析、人工智能、Web开发等领域&#xff0c;其安全问题越来越受到重视。Python作为一门高效且易于学习的编程语言&#xff0c;虽然在…...

蓝桥杯刷题DAY3:Horner 法则 前缀和+差分数组 贪心

所谓刷题&#xff0c;最重要的就是细心 &#x1f4cc; 题目描述 在 X 进制 中&#xff0c;每一数位的进制不固定。例如&#xff1a; 最低位 采用 2 进制&#xff0c;第二位 采用 10 进制&#xff0c;第三位 采用 8 进制&#xff0c; 则 X 进制数 321 的十进制值为&#xff…...

java项目验证码登录

1.依赖 导入hutool工具包用于创建验证码 <dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.5.2</version></dependency> 2.测试 生成一个验证码图片&#xff08;生成的图片浏览器可…...

手写MVVM框架-环境搭建

项目使用 webpack 进行进行构建&#xff0c;初始化步骤如下: 1.创建npm项目执行npm init 一直下一步就行 2.安装webpack、webpack-cli、webpack-dev-server&#xff0c;html-webpack-plugin npm i -D webpack webpack-cli webpack-dev-server html-webpack-plugin 3.配置webpac…...

2025年2月2日(网络编程 tcp)

tcp 循环服务 import socketdef main():# 创建 socket# 绑定tcp_server socket.socket(socket.AF_INET, socket.SOCK_STREAM)tcp_server.bind(("", 8080))# socket 转变为被动tcp_server.listen(128)while True:# 产生专门为链接进来的客户端服务的 socketprint(&qu…...

【Docker项目实战】使用Docker部署MinIO对象存储(详细教程)

【Docker项目实战】使用Docker部署MinIO对象存储 前言一、 MinIO介绍1.1 MinIO简介1.2 主要特点1.3 主要使用场景二、本次实践规划2.1 本地环境规划2.2 本次实践介绍三、本地环境检查3.1 检查Docker服务状态3.2 检查Docker版本3.3 检查docker compose 版本四、下载MinIO镜像五、…...

使用ollama本地部署Deepseek r1

1、下载ollama 在浏览器地址输入&#xff1a;https://ollama.com/ 选择windows版本的下载 2、安装ollama 3、运行ollama 安装完成后&#xff0c;打开命令行工具win r 在命令行输入&#xff1a;ollama 4、使用ollama下载并部署Deepseed r1 在ollama网站&#xff0c;下载…...

Unity飞行代码 超仿真 保姆级教程

本文使用Rigidbody控制飞机&#xff0c;基本不会穿模。 效果 飞行效果 这是一条优雅的广告 如果你也在开发飞机大战等类型的飞行游戏&#xff0c;欢迎在主页搜索博文并参考。 搜索词&#xff1a;Unity游戏(Assault空对地打击)开发。 脚本编写 首先是完整代码。 using System.Co…...

DeepSeek蒸馏模型:轻量化AI的演进与突破

目录 引言 一、知识蒸馏的技术逻辑与DeepSeek的实践 1.1 知识蒸馏的核心思想 1.2 DeepSeek的蒸馏架构设计 二、DeepSeek蒸馏模型的性能优势 2.1 效率与成本的革命性提升 2.2 性能保留的突破 2.3 场景适应性的扩展 三、应用场景与落地实践 3.1 智能客服系统的升级 3.2…...

使用 sunshine+moonlight 配置串流服务无法使用特殊键

最近了解到串流技术&#xff0c;使用的方案是 sunshine 为串流服务端&#xff0c;moonlight 为客户端&#xff0c;分别在 ipad&#xff0c;android&#xff0c;tv 端安装。 存在的问题 不管说什么平台都会有特殊键无法使用的问题&#xff0c;最初我发现在安卓电视&#xff0c…...

5.角色基础移动

能帮到你的话&#xff0c;就给个赞吧 &#x1f618; 文章目录 角色的xyz轴与移动方向拌合输入轴值add movement inputget controller rotationget right vectorget forward vector 发现模型的旋转改变后&#xff0c;xyz轴也会改变&#xff0c;所以需要旋转值来计算xyz轴方向。 …...

单细胞-第四节 多样本数据分析,下游画图

文件在单细胞\5_GC_py\1_single_cell\2_plots.Rmd 1.细胞数量条形图 rm(list ls()) library(Seurat) load("seu.obj.Rdata")dat as.data.frame(table(Idents(seu.obj))) dat$label paste(dat$Var1,dat$Freq,sep ":") head(dat) library(ggplot2) lib…...

Linux的循环,bash的循环

Linux的循环,bash的循环 在 Linux 系统中&#xff0c;Bash 循环是最常用的循环实现方式&#xff08;Bash 是 Linux 默认的 Shell&#xff09;&#xff0c;但广义上“Linux 的循环”可能涉及其他 Shell 或编程语言的循环结构。以下是 Bash 循环的详细解析及其在 Linux 环境中的…...

【DeepSeek开发】Python实现股票数据可视化

代码&#xff1a; Github&#xff1a;Python实现股票数据可视化代码https://github.com/magolan2000/Data-visualization/tree/master 软件环境&#xff1a;PyCharm 2022.3.1 数据来源&#xff1a;akshare 最近DeepSeek可谓是热度不断&#xff0c;因此想评判一下DeepSeek的编程…...

华为小米vivo向上,苹果荣耀OPPO向下

日前&#xff0c;Counterpoint发布的手机销量月度报告显示&#xff0c;中国智能手机销量在2024年第四季度同比下降3.2%&#xff0c;成为2024年唯一出现同比下滑的季度。而对于各大智能手机品牌来说&#xff0c;他们的市场份额和格局也在悄然发生变化。 华为逆势向上 在2024年第…...

毕业设计:基于深度学习的高压线周边障碍物自动识别与监测系统

目录 前言 课题背景和意义 实现技术思路 一、算法理论基础 1.1 卷积神经网络 1.2 目标检测算法 1.3 注意力机制 二、 数据集 2.1 数据采集 2.2 数据标注 三、实验及结果分析 3.1 实验环境搭建 3.2 模型训练 3.2 结果分析 最后 前言 &#x1f4c5;大四是整个大学…...

el-table表格点击单元格实现编辑

使用 el-table 和 el-table-column 创建表格。在单元格的默认插槽中&#xff0c;使用 div 显示文本内容&#xff0c;单击时触发编辑功能。使用 el-input 组件在单元格中显示编辑框。data() 方法中定义了 tableData&#xff0c;tabClickIndex: null,tabClickLabel: ,用于判断是否…...

数据结构:时间复杂度

文章目录 为什么需要时间复杂度分析&#xff1f;一、大O表示法&#xff1a;复杂度的语言1.1 什么是大O&#xff1f;1.2 常见复杂度速查表 二、实战分析&#xff1a;解剖C语言代码2.1 循环结构的三重境界单层循环&#xff1a;线性时间双重循环&#xff1a;平方时间动态边界循环&…...

SPI(Serial Peripheral Interface)串行外围设备接口

SPI概述&#xff1a; SPI协议最初由Motorola公司&#xff08;现为NXP Semiconductors的一部分&#xff09;在20世纪80年代中期开发。最初是为了在其68000系列微控制器中实现高速、高效的串行通信。该协议旨在简化微控制器与外围设备之间的数据传输。 1980年代&#xff1a;SPI协…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...