【B站保姆级视频教程:Jetson配置YOLOv11环境(六)PyTorchTorchvision安装】
Jetson配置YOLOv11环境(6)PyTorch&Torchvision安装
文章目录
- 1. 安装PyTorch
- 1.1安装依赖项
- 1.2 下载torch wheel 安装包
- 1.3 安装
- 2. 安装torchvisiion
- 2.1 安装依赖
- 2.2 编译安装torchvision
- 2.2.1 Torchvisiion版本选择
- 2.2.2 下载torchvisiion到Downloads目录下
- 2.2.3 编译安装torchvision
- 2.3 安装过程可能出现的bug
- 3. 验证
- 4. 更便捷的安装方式
- 4.1 JetPack 5.1.2
- 4.2 JetPack 6.1
1. 安装PyTorch
1.1安装依赖项
sudo apt install libopenblas-dev
libopenblas-dev作用:提供优化的BLAS(Basic Linear Algebra Subprograms)库,用于高效执行线性代数运算。
影响:PyTorch依赖于高效的线性代数运算来加速深度学习模型的训练和推理。libopenblas-dev提供了优化的BLAS实现,可以显著提升PyTorch的性能,尤其是在CPU上运行时。
1.2 下载torch wheel 安装包
前往PyTorch for Jetson,下载所安装的jetpack版本支持的最高版本的torch wheel 安装包到Downloads目录下。
cd /Downloads
wget https://developer.download.nvidia.cn/compute/redist/jp/v512/pytorch/torch-2.1.0a0+41361538.nv23.06-cp38-cp38-linux_aarch64.whl
例如:jetpack5.1.x对应下图中红框的torch安装包,需注意Python 版本为 3.8。

1.3 安装
pip install torch-2.1.0a0+41361538.nv23.06-cp38-cp38-linux_aarch64.whl
2. 安装torchvisiion
2.1 安装依赖
pip install numpy requests Pillow
sudo apt install libjpeg-dev libpng-dev zlib1g-dev libpython3-dev libavcodec-dev libavformat-dev libswscale-dev
2.2 编译安装torchvision
torchvision暂未发布直接能pip安装的whl版本,因此直接从源码编译。
2.2.1 Torchvisiion版本选择
以torch2.1.0为例,对应的torchvisiion版本为0.16.x。
torch与torchvision版本对应关系
torch | torchvision | Python |
|---|---|---|
main / nightly | main / nightly | >=3.9, <=3.12 |
2.5 | 0.20 | >=3.9, <=3.12 |
2.4 | 0.19 | >=3.8, <=3.12 |
2.3 | 0.18 | >=3.8, <=3.12 |
2.2 | 0.17 | >=3.8, <=3.11 |
2.1 | 0.16 | >=3.8, <=3.11 |
2.0 | 0.15 | >=3.8, <=3.11 |
2.2.2 下载torchvisiion到Downloads目录下
(1)网络ok的话,直接克隆到本地。
cd ./Downloads
git clone --branch v0.16.2 https://github.com/pytorch/vision
(2)网络不行clone慢的话,直接下载压缩包到PC

再上传jetson,解压即可
unzip vision-0.16.2.zip
2.2.3 编译安装torchvision
cd vision-0.16.2 # 进入torchvision目录
export BUILD_VERSION=0.16.2 # 将BUILD_VERSION环境变量设置为值 0.16.2
python3 setup.py install --user # 使用 Python 的 setuptools 工具将vision包安装到当前用户的本地目录中
需要等待30min左右,出现以下提示则安装成功

安装成功后退出torchvision的安装目录再import torchvision进行验证,否则会出现以下warning
(pytorch) nx@nx-desktop:~/Downloads/vision-0.15.2$ python
Python 3.8.18 (default, Sep 11 2023, 13:19:25)
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torchvision
/home/nx/Downloads/vision-0.15.2/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: ''If you don't plan on using image functionality from `torchvision.io`, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have `libjpeg` or `libpng` installed before building `torchvision` from source?warn(
/home/nx/Downloads/vision-0.15.2/torchvision/__init__.py:25: UserWarning: You are importing torchvision within its own root folder (/home/nx/Downloads/vision-0.15.2). This is not expected to work and may give errors. Please exit the torchvision project source and relaunch your python interpreter.warnings.warn(message.format(os.getcwd()))
2.3 安装过程可能出现的bug
若出现error: [Errno 2] No such file or directory: ':/usr/local/cuda/bin/nvcc',请参照:
jetson编译torchvision出现 No such file or directory: ‘:/usr/local/cuda/bin/nvcc‘
3. 验证
查看pytorch运行时真正调用的cuda、cudnn版本:
python -c "import torch; import torchvision; print('PyTorch version:', torch.__version__); print('CUDA available:', torch.cuda.is_available()); print('CUDA version:', torch.version.cuda); print('cuDNN enabled:', torch.backends.cudnn.enabled); print('cuDNN version:', torch.backends.cudnn.version()); print('Torchvision version:', torchvision.__version__)"

2025-2-4 19:47:09更新:发现了更便捷的安装方式,ultralytics官方已经提供了编译好的torchvision whl包。
4. 更便捷的安装方式
在安装完torch和torchvision的依赖之后,运行下述两行命令即可。若下载慢,出现WARNING: Retrying,直接先下载到本地PC再上传jetson安装即可。

4.1 JetPack 5.1.2
安装 torch 2.1.0 和 torchvision 0.16.2
pip install https://github.com/ultralytics/assets/releases/download/v0.0.0/torch-2.1.0a0+41361538.nv23.06-cp38-cp38-linux_aarch64.whl
pip install https://github.com/ultralytics/assets/releases/download/v0.0.0/torchvision-0.16.2+c6f3977-cp38-cp38-linux_aarch64.whl
4.2 JetPack 6.1
安装 torch 2.5.0 和 torchvision 0.20
pip install https://github.com/ultralytics/assets/releases/download/v0.0.0/torch-2.5.0a0+872d972e41.nv24.08-cp310-cp310-linux_aarch64.whl
pip install https://github.com/ultralytics/assets/releases/download/v0.0.0/torchvision-0.20.0a0+afc54f7-cp310-cp310-linux_aarch64.whl
安装 cuSPARSELt 的依赖性问题 torch 2.5.0
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/arm64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get -y install libcusparselt0 libcusparselt-dev
相关文章:
【B站保姆级视频教程:Jetson配置YOLOv11环境(六)PyTorchTorchvision安装】
Jetson配置YOLOv11环境(6)PyTorch&Torchvision安装 文章目录 1. 安装PyTorch1.1安装依赖项1.2 下载torch wheel 安装包1.3 安装 2. 安装torchvisiion2.1 安装依赖2.2 编译安装torchvision2.2.1 Torchvisiion版本选择2.2.2 下载torchvisiion到Downloa…...
Verilog语言学习总结
Verilog语言学习! 目录 文章目录 前言 一、Verilog语言是什么? 1.1 Verilog简介 1.2 Verilog 和 C 的区别 1.3 Verilog 学习 二、Verilog基础知识 2.1 Verilog 的逻辑值 2.2 数字进制 2.3 Verilog标识符 2.4 Verilog 的数据类型 2.4.1 寄存器类型 2.4.2 …...
【阅读笔记】LED显示屏非均匀度校正
一、背景 发光二极管(LED)显示屏具有色彩鲜艳、图像清晰、亮度高、驱动电压低、功耗小、耐震动、价格低廉和使用寿命长等优势。LED显示图像的非均匀度是衡量LED显示屏显示质量的指标,非均匀度过高,会导致LED显示图像出现明暗不均…...
【Java异步编程】CompletableFuture基础(1):创建不同线程的子任务、子任务链式调用与异常处理
文章目录 1. 三种实现接口2. 链式调用:保证链的顺序性与异步性3. CompletableFuture创建CompletionStage子任务4. 处理异常a. 创建回调钩子b. 调用handle()方法统一处理异常和结果 5. 如何选择线程池:不同的业务选择不同的线程池 CompletableFuture是JDK…...
ESXI虚拟机中部署docker会降低服务器性能
在 8 核 16GB 的 ESXi 虚拟机中部署 Docker 的性能影响分析 在 ESXi 虚拟机中运行 Docker 容器时,性能影响主要来自以下几个方面: 虚拟化开销:ESXi 虚拟化层和 Docker 容器化层的叠加。资源竞争:虚拟机与容器之间对 CPU、内存、…...
ASP.NET Core与配置系统的集成
目录 配置系统 默认添加的配置提供者 加载命令行中的配置。 运行环境 读取方法 User Secrets 注意事项 Zack.AnyDBConfigProvider 案例 配置系统 默认添加的配置提供者 加载现有的IConfiguration。加载项目根目录下的appsettings.json。加载项目根目录下的appsettin…...
中间件的概念及基本使用
什么是中间件 中间件是ASP.NET Core的核心组件,MVC框架、响应缓存、身份验证、CORS、Swagger等都是内置中间件。 广义上来讲:Tomcat、WebLogic、Redis、IIS;狭义上来讲,ASP.NET Core中的中间件指ASP.NET Core中的一个组件。中间件…...
SpringBoot 整合 Mybatis:注解版
第一章:注解版 导入配置: <groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>1.3.1</version> </dependency> 步骤: 配置数据源见 Druid…...
18.[前端开发]Day18-王者荣耀项目实战(一)
01-06 项目实战 1 代码规范 2 CSS编写顺序 3 组件化开发思想 组件化开发思路 项目整体思路 – 各个击破 07_(掌握)王者荣耀-top-整体布局完成 完整代码 01_page_top1.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8…...
Kafka 使用说明(kafka官方文档中文)
文章来源:kafka -- 南京筱麦软件有限公司 第 1 步:获取 KAFKA 下载最新的 Kafka 版本并提取它: $ tar -xzf kafka_{{scalaVersion}}-{{fullDotVersion}}.tgz $ cd kafka_{{scalaVersion}}-{{fullDotVersion}} 第 2 步:启动 KAFKA 环境 注意:您的本地环境必须安装 Java 8+。…...
基于多智能体强化学习的医疗AI中RAG系统程序架构优化研究
一、引言 1.1 研究背景与意义 在数智化医疗飞速发展的当下,医疗人工智能(AI)已成为提升医疗服务质量、优化医疗流程以及推动医学研究进步的关键力量。医疗 AI 借助机器学习、深度学习等先进技术,能够处理和分析海量的医疗数据,从而辅助医生进行疾病诊断、制定治疗方案以…...
Airflow:深入理解Apache Airflow Task
Apache Airflow是一个开源工作流管理平台,支持以编程方式编写、调度和监控工作流。由于其灵活性、可扩展性和强大的社区支持,它已迅速成为编排复杂数据管道的首选工具。在这篇博文中,我们将深入研究Apache Airflow 中的任务概念,探…...
multisim入门学习设计电路
文章目录 1.软件的安装2.电路基本设计2.1二极管的简介2.2最终的设计效果2.3设计流程介绍 3.如何测试电路 1.软件的安装 我是参考的下面的这个文章,文章的链接放在下面,亲测是有效的,如果是小白的话,可以参考一下: 【…...
【算法精练】二分查找算法总结
目录 前言 1. 二分查找(基础版) 2. 寻找左右端点 循环判断条件 求中间点 总结 前言 说起二分查找,也是一种十分常见的算法,最常听说的就是:二分查找只能在数组有序的场景下使用;其实也未必,…...
从零开始实现一个双向循环链表:C语言实战
文章目录 1链表的再次介绍2为什么选择双向循环链表?3代码实现:从初始化到销毁1. 定义链表节点2. 初始化链表3. 插入和删除节点4. 链表的其他操作5. 打印链表和判断链表是否为空6. 销毁链表 4测试代码5链表种类介绍6链表与顺序表的区别7存储金字塔L0: 寄存…...
MYSQL面试题总结(题目来源JavaGuide)
MYSQL基础架构 问题1:一条 SQL语句在MySQL中的执行过程 1. 解析阶段 (Parsing) 查询分析:当用户提交一个 SQL 语句时,MySQL 首先会对语句进行解析。这个过程会检查语法是否正确,确保 SQL 语句符合 MySQL 的语法规则。如果发现…...
visual studio安装
一、下载Visual Studio 访问Visual Studio官方网站。下载 Visual Studio Tools - 免费安装 Windows、Mac、Linux 在主页上找到并点击“下载 Visual Studio”按钮。 选择适合需求的版本,例如“Visual Studio Community”(免费版本)&#x…...
JVM执行引擎
一、执行引擎的概述: 执行引擎是]ava虚拟机核心的组成部分之一; “虚拟机”是一个相对于“物理机”的概念,这两种机器都有代码执行能力,其区别是物理机的执行引擎是直接建立在处理器、缓存、指令集和操作系统层面上的,而虚拟机的执行引擎则…...
C# 9.0记录类型:解锁开发效率的魔法密码
一、引言:记录类型的神奇登场 在 C# 的编程世界中,数据结构就像是构建软件大厦的基石,其重要性不言而喻。然而,传统的数据结构定义方式,尤其是在处理简单的数据承载对象时,常常显得繁琐复杂。例如…...
搭建自己的专属AI——使用Ollama+AnythingLLM+Python实现DeepSeek本地部署
前言 最近DeepSeek模型非常火,其通过对大模型的蒸馏得到的小模型可以较轻松地在个人电脑上运行,这也使得我们有机会在本地构建一个专属于自己的AI,进而把AI“调教”为我们希望的样子。本篇文章中我将介绍如何使用OllamaAnythingLLMPython实现…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学
一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件,其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时,价带电子受激发跃迁至导带,形成电子-空穴对,导致材料电导率显著提升。…...
stm32进入Infinite_Loop原因(因为有系统中断函数未自定义实现)
这是系统中断服务程序的默认处理汇编函数,如果我们没有定义实现某个中断函数,那么当stm32产生了该中断时,就会默认跑这里来了,所以我们打开了什么中断,一定要记得实现对应的系统中断函数,否则会进来一直循环…...
Springboot多数据源配置实践
Springboot多数据源配置实践 基本配置文件数据库配置Mapper包Model包Service包中业务代码Mapper XML文件在某些复杂的业务场景中,我们可能需要使用多个数据库来存储和管理不同类型的数据,而不是仅仅依赖于单一数据库。本技术文档将详细介绍如何在 Spring Boot 项目中进行多数…...
