当前位置: 首页 > news >正文

机器学习常用包numpy篇(四)函数运算

目录

前言

一、三角函数

二、双曲函数

三、数值修约

四、 求和、求积与差分

五、 指数与对数

六、算术运算

七、 矩阵与向量运算

八、代数运算

九、 其他数学工具

总结


前言

Python 的原生运算符可实现基础数学运算(加减乘除、取余、取整、幂运算),结合 math 模块可扩展常用功能(绝对值、阶乘、平方根等)。但对于复杂数值计算场景,这些工具仍有局限。而NumPy 提供了更丰富的数学函数库,能够高效处理多维数据与高级数学运算需求。

一、三角函数

1.核心功能

  • sincostan:计算正弦、余弦、正切。

  • arcsinarccosarctan:计算反三角函数。

  • hypot(x1, x2):直角三角形的斜边计算 = sqrt(x12+x22​​)。   

2.弧度与角度转换

  • degrees(x)rad2deg(x):弧度转角度。
  • radians(x)deg2rad(x):角度转弧度。

代码一览:

numpy.sin(x)#三角正弦
numpy.cos(x)#三角余弦
numpy.tan(x)#三角正切
numpy.arcsin(x)#三角反正弦
numpy.arccos(x)#三角反余弦
numpy.arctan(x)#三角反正切
numpy.hypot(x1,x2)#直角三角形求斜边
numpy.degrees(x)#弧度转换为度
numpy.radians(x)#度转换为弧度
numpy.deg2rad(x)#度转换为弧度
numpy.rad2deg(x)#弧度转换为度

使用示例:

二、双曲函数

1.功能

  • sinhcoshtanh:计算双曲函数。

  • arcsinharccosharctanh:反双曲函数。

代码一览:

numpy.sinh(x)#双曲正弦
numpy.cosh(x)#双曲余弦
numpy.tanh(x)#双曲正切
numpy.arcsinh(x)#反双曲正弦
numpy.arccosh(x)#反双曲余弦
numpy.arctanh(x)#反双曲正切

三、数值修约

1.核心方法

  • around(a):四舍五入到指定小数位。

  • rint(x):就近取整(与四舍五入规则不同)。

  • fix(x):向零方向取整(如 3.7 → 3,-2.1 → -2)。

  • floor(x):向下取整(最大整数 ≤ x)。

  • ceil(x):向上取整(最小整数 ≥ x)。

  • trunc(x):截断小数部分(等价于 fix)。

代码一览:

numpy.around(a)#平均到给定的小数位数。
numpy.round_(a)#将数组舍入到给定的小数位数。
numpy.rint(x)#修约到最接近的整数。
numpy.fix(x, y)#向 0 舍入到最接近的整数。
numpy.floor(x)#返回输入的底部(标量 x 的底部是最大的整数 i)。
numpy.ceil(x)#返回输入的上限(标量 x 的底部是最小的整数 i).
numpy.trunc(x)#返回输入的截断值。

四、 求和、求积与差分

1.关键函数

  • 累计算sum(a)prod(a)(总和与乘积)。

  • 累积操作cumsum(a)cumprod(a)(累加和累乘)。

  • 处理 NaNnansumnanprod(忽略 NaN 值)。

  • 差分diff(a)(计算相邻元素差)。

代码一览:

numpy.prod(a, axis, dtype, keepdims)#返回指定轴上的数组元素的乘积。
numpy.sum(a, axis, dtype, keepdims)#返回指定轴上的数组元素的总和。
numpy.nanprod(a, axis, dtype, keepdims)#返回指定轴上的数组元素的乘积, 将 NaN 视作 1。
numpy.nansum(a, axis, dtype, keepdims)#返回指定轴上的数组元素的总和, 将 NaN 视作 0。
numpy.cumprod(a, axis, dtype)#返回沿给定轴的元素的累积乘积。
numpy.cumsum(a, axis, dtype)#返回沿给定轴的元素的累积总和。
numpy.nancumprod(a, axis, dtype)#返回沿给定轴的元素的累积乘积, 将 NaN 视作 1。
numpy.nancumsum(a, axis, dtype)#返回沿给定轴的元素的累积总和, 将 NaN 视作 0。
numpy.diff(a, n, axis)#计算沿指定轴的第 n 个离散差分。
numpy.ediff1d(ary, to_end, to_begin)#数组的连续元素之间的差异。
numpy.gradient(f)#返回 N 维数组的梯度。
numpy.cross(a, b, axisa, axisb, axisc, axis)#返回两个(数组)向量的叉积。
numpy.trapz(y, x, dx, axis)#使用复合梯形规则沿给定轴积分。

五、 指数与对数

1.常用方法

  • exp(x):计算 e的x次方。

  • log(x)log10(x)log2(x):自然对数、以10或者2为底的对数。

numpy.exp(x)#计算输入数组中所有元素的指数。
numpy.log(x)#计算自然对数。
numpy.log10(x)#计算常用对数。
numpy.log2(x)#计算二进制对数。

六、算术运算

1.元素级操作

  • add(x1, x2):加法。

  • multiply(x1, x2):乘法。

  • power(x1, x2):幂运算(x1x2x1x2​​)。

  • mod(x1, x2):取余。

代码一览:

numpy.add(x1, x2)  # 对应元素相加
numpy.reciprocal(x)  # 求倒数 1/x
numpy.negative(x)  # 求对应负数
numpy.multiply(x1, x2)  # 求解乘法
numpy.divide(x1, x2)  # 相除 x1/x2
numpy.power(x1, x2)  # 类似于 x1^x2
numpy.subtract(x1, x2)  # 减法
numpy.fmod(x1, x2)  # 返回除法的元素余项
numpy.mod(x1, x2)  # 返回余项
numpy.modf(x1)  # 返回数组的小数和整数部分
numpy.remainder(x1, x2)  # 返回除法余数

七、 矩阵与向量运算

1.核心功能

  • 点积dot(a, b)(支持向量、矩阵乘法)。

  • 矩阵乘法matmul(a, b)(专用于矩阵)。

  • 外积outer(a, b)

  • 张量运算tensordot(a, b)

代码一览:

numpy.dot(a, b)  # 求解两个数组的点积
numpy.vdot(a, b)  # 求解两个向量的点积
numpy.inner(a, b)  # 求解两个数组的内积
numpy.outer(a, b)  # 求解两个向量的外积
numpy.matmul(a, b)  # 求解两个数组的矩阵乘积
numpy.tensordot(a, b)  # 求解张量点积
numpy.kron(a, b)  # 计算 Kronecker 乘积

八、代数运算

1.线性代数工具

  • 分解linalg.cholesky(Cholesky分解)、linalg.svd(奇异值分解)。

  • 特征值linalg.eig(a)(特征值与特征向量)。

  • 行列式linalg.det(a)

  • 逆矩阵linalg.inv(a)

  • 最小二乘解linalg.lstsq(a, b)

代码一览:

numpy.linalg.cholesky(a)#Cholesky 分解。
numpy.linalg.qr(a ,mode)#计算矩阵的 QR 因式分解。
numpy.linalg.svd(a ,full_matrices,compute_uv)#奇异值分解。
numpy.linalg.eig(a)#计算正方形数组的特征值和右特征向量。
numpy.linalg.eigh(a, UPLO)#返回 Hermitian 或对称矩阵的特征值和特征向量。
numpy.linalg.eigvals(a)#计算矩阵的特征值。
numpy.linalg.eigvalsh(a, UPLO)#计算 Hermitian 或真实对称矩阵的特征值。
numpy.linalg.norm(x ,ord,axis,keepdims)#计算矩阵或向量范数。
numpy.linalg.cond(x ,p)#计算矩阵的条件数。
numpy.linalg.det(a)#计算数组的行列式。
numpy.linalg.matrix_rank(M ,tol)#使用奇异值分解方法返回秩。
numpy.linalg.slogdet(a)#计算数组的行列式的符号和自然对数。
numpy.trace(a ,offset,axis1,axis2,dtype,out)#沿数组的对角线返回总和。
numpy.linalg.solve(a, b)#求解线性矩阵方程或线性标量方程组。
numpy.linalg.tensorsolve(a, b ,axes)#为 x 解出张量方程 a x = b
numpy.linalg.lstsq(a, b ,rcond)#将最小二乘解返回到线性矩阵方程。
numpy.linalg.inv(a)#计算逆矩阵。
numpy.linalg.pinv(a ,rcond)#计算矩阵的(Moore - Penrose)伪逆。
numpy.linalg.tensorinv(a ,ind)#计算 N 维数组的逆。

九、 其他数学工具

  • 复数处理real(z)imag(z)(实部与虚部)。

  • 统计计算maximumminimum(最值)。

  • 插值与梯度interp(线性插值)、gradient(数值梯度)。

代码一览:

numpy.angle(z, deg)#返回复参数的角度。
numpy.real(val)#返回数组元素的实部。
numpy.imag(val)#返回数组元素的虚部。
numpy.conj(x)#按元素方式返回共轭复数。
numpy.convolve(a, v, mode)#返回线性卷积。
numpy.sqrt(x)#平方根。
numpy.cbrt(x)#立方根。
numpy.square(x)#平方。
numpy.absolute(x)#绝对值, 可求解复数。
numpy.fabs(x)#绝对值。
numpy.sign(x)#符号函数。
numpy.maximum(x1, x2)#最大值。
numpy.minimum(x1, x2)#最小值。
numpy.nan_to_num(x)#用 0 替换 NaN。
numpy.interp(x, xp, fp, left, right, period)#线性插值。

总结

NumPy 提供了覆盖基础数学到高级线性代数的完整工具集:

  • 基础运算:三角函数、数值修约、求和求积。

  • 复杂计算:矩阵乘法、特征值分解、张量运算。

  • 工程应用:插值、梯度计算、最小二乘解。

相关文章:

机器学习常用包numpy篇(四)函数运算

目录 前言 一、三角函数 二、双曲函数 三、数值修约 四、 求和、求积与差分 五、 指数与对数 六、算术运算 七、 矩阵与向量运算 八、代数运算 九、 其他数学工具 总结 前言 Python 的原生运算符可实现基础数学运算(加减乘除、取余、取整、幂运算&#…...

CSS in JS

css in js css in js 的核心思想是:用一个 JS 对象来描述样式,而不是 css 样式表。 例如下面的对象就是一个用于描述样式的对象: const styles {backgroundColor: "#f40",color: "#fff",width: "400px",he…...

TCP 丢包恢复策略:代价权衡与优化迷局

网络物理层丢包是一种需要偿还的债务,可以容忍低劣的传输质量,这为 UDP 类服务提供了空间,而对于 TCP 类服务,可以用另外两类代价来支付: 主机端采用轻率的 GBN 策略恢复丢包,节省 CPU 资源,但…...

面经--C语言——内存泄漏、malloc和new的区别 .c文件怎么转换为可执行程序 uart和usart的区别 继承的访问权限总结

文章目录 内存泄漏预防内存泄漏的方法: malloc和new的区别.c文件怎么转换为可执行程序uart和usart的区别继承的访问权限总结访问控制符总结1. **public**:2. **protected**:3. **private**:继承类型: 内存泄漏 内存泄漏是指程序在运行时动态分配内存后&…...

Denavit-Hartenberg DH MDH坐标系

Denavit-Hartenberg坐标系及其规则详解 6轴协作机器人的MDH模型详细图_6轴mdh-CSDN博客 N轴机械臂的MDH正向建模,及python算法_mdh建模-CSDN博客 运动学3-----正向运动学 | 鱼香ROS 机器人学:MDH建模 - 哆啦美 - 博客园 机械臂学习——标准DH法和改进MDH…...

力扣动态规划-20【算法学习day.114】

前言 ###我做这类文章一个重要的目的还是记录自己的学习过程,我的解析也不会做的非常详细,只会提供思路和一些关键点,力扣上的大佬们的题解质量是非常非常高滴!!! 习题 1.网格中的最小路径代价 题目链接…...

计算机视觉-边缘检测

一、边缘 1.1 边缘的类型 ①实体上的边缘 ②深度上的边缘 ③符号的边缘 ④阴影产生的边缘 不同任务关注的边缘不一样 1.2 提取边缘 突变-求导(求导也是一种卷积) 近似,1(右边的一个值-自己可以用卷积做) 该点f(x,y)…...

文字加持:让 OpenCV 轻松在图像中插上文字

前言 在很多图像处理任务中,我们不仅需要提取图像信息,还希望在图像上加上一些文字,或是标注,或是动态展示。正如在一幅画上添加一个标语,或者在一个视频上加上动态字幕,cv2.putText 就是这个“文字魔术师”,它能让我们的图像从“沉默寡言”变得生动有趣。 今天,我们…...

掌握 HTML5 多媒体标签:如何在所有浏览器中顺利嵌入视频与音频

系列文章目录 01-从零开始学 HTML:构建网页的基本框架与技巧 02-HTML常见文本标签解析:从基础到进阶的全面指南 03-HTML从入门到精通:链接与图像标签全解析 04-HTML 列表标签全解析:无序与有序列表的深度应用 05-HTML表格标签全面…...

在Mac mini M4上部署DeepSeek R1本地大模型

在Mac mini M4上部署DeepSeek R1本地大模型 安装ollama 本地部署,我们可以通过Ollama来进行安装 Ollama 官方版:【点击前往】 Web UI 控制端【点击安装】 如何在MacOS上更换Ollama的模型位置 默认安装时,OLLAMA_MODELS 位置在"~/.o…...

【电脑系统】电脑突然(蓝屏)卡死发出刺耳声音

文章目录 前言问题描述软件解决方案尝试硬件解决方案尝试参考文献 前言 在 更换硬盘 时遇到的问题,有时候只有卡死没有蓝屏 问题描述 更换硬盘后,电脑用一会就卡死,蓝屏,显示蓝屏代码 UNEXPECTED_STORE_EXCEPTION 软件解决方案…...

Docker使用指南(二)——容器相关操作详解(实战案例教学,创建/使用/停止/删除)

目录 1.容器操作相关命令​编辑 案例一: 案例二: 容器常用命令总结: 1.查看容器状态: 2.删除容器: 3.进入容器: 二、Docker基本操作——容器篇 1.容器操作相关命令 下面我们用两个案例来具体实操一…...

Java中的常见对象类型解析

在Java开发中,数据的组织和传递是一个重要的概念。为了确保代码的清晰性、可维护性和可扩展性,我们通常会根据不同的用途,设计和使用不同类型的对象。这些对象的作用各不相同,但它们共同为构建高效、模块化的软件架构提供支持。 …...

Dijkstra算法解析

Dijkstra算法,用于求解图中从一个起点到其他所有节点的最短路径。解决单源最短路径问题的有效方法。 条件 有向 带权路径 时间复杂度 O(n平方) 方法步骤 1 把图上的点分为两个集合 要求的起点 和除了起点之外的点 。能直达的写上权值 不…...

C++ Primer 多维数组

欢迎阅读我的 【CPrimer】专栏 专栏简介:本专栏主要面向C初学者,解释C的一些基本概念和基础语言特性,涉及C标准库的用法,面向对象特性,泛型特性高级用法。通过使用标准库中定义的抽象设施,使你更加适应高级…...

maven mysql jdk nvm node npm 环境安装

安装JDK 1.8 11 环境 maven环境安装 打开网站 下载 下载zip格式 解压 自己创建一个maven库 以后在idea 使用maven时候重新设置一下 这三个地方分别设置 这时候maven才算设置好 nvm 管理 npm nodejs nvm下载 安装 Releases coreybutler/nvm-windows GitHub 一键安装且若有…...

SQL Server中RANK()函数:处理并列排名与自然跳号

RANK()是SQL Server的窗口函数,为结果集中的行生成排名。当出现相同值时,后续排名会跳过被占用的名次,形成自然间隔。与DENSE_RANK()的关键区别在于是否允许排名值连续。 语法: RANK() OVER ([PARTITION BY 分组列]ORDER BY 排序…...

如何运行Composer安装PHP包 安装JWT库

1. 使用Composer Composer是PHP的依赖管理工具,它允许你轻松地安装和管理PHP包。对于JWT,你可以使用firebase/php-jwt这个库,这是由Firebase提供的官方库。 安装Composer(如果你还没有安装的话): 访问Co…...

最新功能发布!AllData数据中台核心菜单汇总

🔥🔥 AllData大数据产品是可定义数据中台,以数据平台为底座,以数据中台为桥梁,以机器学习平台为中层框架,以大模型应用为上游产品,提供全链路数字化解决方案。 ✨奥零数据科技官网:http://www.aolingdata.com ✨AllData开源项目:https://github.com/alldatacenter/…...

【OS】AUTOSAR架构下的Interrupt详解(上篇)

目录 前言 正文 1.中断概念分析 1.1 中断处理API 1.2 中断级别 1.3 中断向量表 1.4 二类中断的嵌套 1.4.1概述 1.4.2激活 1.5一类中断 1.5.1一类中断的实现 1.5.2一类中断的嵌套 1.5.3在StartOS之前的1类ISR 1.5.4使用1类中断时的注意事项 1.6中断源的初始化 1.…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

Oracle11g安装包

Oracle 11g安装包 适用于windows系统&#xff0c;64位 下载路径 oracle 11g 安装包...

Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么&#xff1f;它的作用是什么&#xff1f; Spring框架的核心容器是IoC&#xff08;控制反转&#xff09;容器。它的主要作用是管理对…...

0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化

是不是受够了安装了oracle database之后sqlplus的简陋&#xff0c;无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话&#xff0c;配置.bahs_profile后也能解决上下翻页这些&#xff0c;但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可&#xff0c…...

实战设计模式之模板方法模式

概述 模板方法模式定义了一个操作中的算法骨架&#xff0c;并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下&#xff0c;重新定义算法中的某些步骤。简单来说&#xff0c;就是在一个方法中定义了要执行的步骤顺序或算法框架&#xff0c;但允许子类…...

【工具教程】多个条形码识别用条码内容对图片重命名,批量PDF条形码识别后用条码内容批量改名,使用教程及注意事项

一、条形码识别改名使用教程 打开软件并选择处理模式&#xff1a;打开软件后&#xff0c;根据要处理的文件类型&#xff0c;选择 “图片识别模式” 或 “PDF 识别模式”。如果是处理包含条形码的 PDF 文件&#xff0c;就选择 “PDF 识别模式”&#xff1b;若是处理图片文件&…...