机器学习常用包numpy篇(四)函数运算
目录
前言
一、三角函数
二、双曲函数
三、数值修约
四、 求和、求积与差分
五、 指数与对数
六、算术运算
七、 矩阵与向量运算
八、代数运算
九、 其他数学工具
总结
前言
Python 的原生运算符可实现基础数学运算(加减乘除、取余、取整、幂运算),结合 math 模块可扩展常用功能(绝对值、阶乘、平方根等)。但对于复杂数值计算场景,这些工具仍有局限。而NumPy 提供了更丰富的数学函数库,能够高效处理多维数据与高级数学运算需求。
一、三角函数
1.核心功能:
-
sin
,cos
,tan
:计算正弦、余弦、正切。 -
arcsin
,arccos
,arctan
:计算反三角函数。 -
hypot(x1, x2)
:直角三角形的斜边计算 = sqrt(x12+x22)。
2.弧度与角度转换:
degrees(x)
,rad2deg(x)
:弧度转角度。radians(x)
,deg2rad(x)
:角度转弧度。
代码一览:
numpy.sin(x)#三角正弦
numpy.cos(x)#三角余弦
numpy.tan(x)#三角正切
numpy.arcsin(x)#三角反正弦
numpy.arccos(x)#三角反余弦
numpy.arctan(x)#三角反正切
numpy.hypot(x1,x2)#直角三角形求斜边
numpy.degrees(x)#弧度转换为度
numpy.radians(x)#度转换为弧度
numpy.deg2rad(x)#度转换为弧度
numpy.rad2deg(x)#弧度转换为度
使用示例:
二、双曲函数
1.功能:
-
sinh
,cosh
,tanh
:计算双曲函数。 -
arcsinh
,arccosh
,arctanh
:反双曲函数。
代码一览:
numpy.sinh(x)#双曲正弦
numpy.cosh(x)#双曲余弦
numpy.tanh(x)#双曲正切
numpy.arcsinh(x)#反双曲正弦
numpy.arccosh(x)#反双曲余弦
numpy.arctanh(x)#反双曲正切
三、数值修约
1.核心方法:
-
around(a)
:四舍五入到指定小数位。 -
rint(x)
:就近取整(与四舍五入规则不同)。 -
fix(x)
:向零方向取整(如 3.7 → 3,-2.1 → -2)。 -
floor(x)
:向下取整(最大整数 ≤ x)。 -
ceil(x)
:向上取整(最小整数 ≥ x)。 -
trunc(x)
:截断小数部分(等价于fix
)。
代码一览:
numpy.around(a)#平均到给定的小数位数。
numpy.round_(a)#将数组舍入到给定的小数位数。
numpy.rint(x)#修约到最接近的整数。
numpy.fix(x, y)#向 0 舍入到最接近的整数。
numpy.floor(x)#返回输入的底部(标量 x 的底部是最大的整数 i)。
numpy.ceil(x)#返回输入的上限(标量 x 的底部是最小的整数 i).
numpy.trunc(x)#返回输入的截断值。
四、 求和、求积与差分
1.关键函数:
-
累计算:
sum(a)
,prod(a)
(总和与乘积)。 -
累积操作:
cumsum(a)
,cumprod(a)
(累加和累乘)。 -
处理 NaN:
nansum
,nanprod
(忽略 NaN 值)。 -
差分:
diff(a)
(计算相邻元素差)。
代码一览:
numpy.prod(a, axis, dtype, keepdims)#返回指定轴上的数组元素的乘积。
numpy.sum(a, axis, dtype, keepdims)#返回指定轴上的数组元素的总和。
numpy.nanprod(a, axis, dtype, keepdims)#返回指定轴上的数组元素的乘积, 将 NaN 视作 1。
numpy.nansum(a, axis, dtype, keepdims)#返回指定轴上的数组元素的总和, 将 NaN 视作 0。
numpy.cumprod(a, axis, dtype)#返回沿给定轴的元素的累积乘积。
numpy.cumsum(a, axis, dtype)#返回沿给定轴的元素的累积总和。
numpy.nancumprod(a, axis, dtype)#返回沿给定轴的元素的累积乘积, 将 NaN 视作 1。
numpy.nancumsum(a, axis, dtype)#返回沿给定轴的元素的累积总和, 将 NaN 视作 0。
numpy.diff(a, n, axis)#计算沿指定轴的第 n 个离散差分。
numpy.ediff1d(ary, to_end, to_begin)#数组的连续元素之间的差异。
numpy.gradient(f)#返回 N 维数组的梯度。
numpy.cross(a, b, axisa, axisb, axisc, axis)#返回两个(数组)向量的叉积。
numpy.trapz(y, x, dx, axis)#使用复合梯形规则沿给定轴积分。
五、 指数与对数
1.常用方法:
-
exp(x)
:计算 e的x次方。 -
log(x)
,log10(x)
,log2(x)
:自然对数、以10或者2为底的对数。
numpy.exp(x)#计算输入数组中所有元素的指数。
numpy.log(x)#计算自然对数。
numpy.log10(x)#计算常用对数。
numpy.log2(x)#计算二进制对数。
六、算术运算
1.元素级操作:
-
add(x1, x2)
:加法。 -
multiply(x1, x2)
:乘法。 -
power(x1, x2)
:幂运算(x1x2x1x2)。 -
mod(x1, x2)
:取余。
代码一览:
numpy.add(x1, x2) # 对应元素相加
numpy.reciprocal(x) # 求倒数 1/x
numpy.negative(x) # 求对应负数
numpy.multiply(x1, x2) # 求解乘法
numpy.divide(x1, x2) # 相除 x1/x2
numpy.power(x1, x2) # 类似于 x1^x2
numpy.subtract(x1, x2) # 减法
numpy.fmod(x1, x2) # 返回除法的元素余项
numpy.mod(x1, x2) # 返回余项
numpy.modf(x1) # 返回数组的小数和整数部分
numpy.remainder(x1, x2) # 返回除法余数
七、 矩阵与向量运算
1.核心功能:
-
点积:
dot(a, b)
(支持向量、矩阵乘法)。 -
矩阵乘法:
matmul(a, b)
(专用于矩阵)。 -
外积:
outer(a, b)
。 -
张量运算:
tensordot(a, b)
代码一览:
numpy.dot(a, b) # 求解两个数组的点积
numpy.vdot(a, b) # 求解两个向量的点积
numpy.inner(a, b) # 求解两个数组的内积
numpy.outer(a, b) # 求解两个向量的外积
numpy.matmul(a, b) # 求解两个数组的矩阵乘积
numpy.tensordot(a, b) # 求解张量点积
numpy.kron(a, b) # 计算 Kronecker 乘积
八、代数运算
1.线性代数工具:
-
分解:
linalg.cholesky
(Cholesky分解)、linalg.svd
(奇异值分解)。 -
特征值:
linalg.eig(a)
(特征值与特征向量)。 -
行列式:
linalg.det(a)
。 -
逆矩阵:
linalg.inv(a)
。 -
最小二乘解:
linalg.lstsq(a, b)
。
代码一览:
numpy.linalg.cholesky(a)#Cholesky 分解。
numpy.linalg.qr(a ,mode)#计算矩阵的 QR 因式分解。
numpy.linalg.svd(a ,full_matrices,compute_uv)#奇异值分解。
numpy.linalg.eig(a)#计算正方形数组的特征值和右特征向量。
numpy.linalg.eigh(a, UPLO)#返回 Hermitian 或对称矩阵的特征值和特征向量。
numpy.linalg.eigvals(a)#计算矩阵的特征值。
numpy.linalg.eigvalsh(a, UPLO)#计算 Hermitian 或真实对称矩阵的特征值。
numpy.linalg.norm(x ,ord,axis,keepdims)#计算矩阵或向量范数。
numpy.linalg.cond(x ,p)#计算矩阵的条件数。
numpy.linalg.det(a)#计算数组的行列式。
numpy.linalg.matrix_rank(M ,tol)#使用奇异值分解方法返回秩。
numpy.linalg.slogdet(a)#计算数组的行列式的符号和自然对数。
numpy.trace(a ,offset,axis1,axis2,dtype,out)#沿数组的对角线返回总和。
numpy.linalg.solve(a, b)#求解线性矩阵方程或线性标量方程组。
numpy.linalg.tensorsolve(a, b ,axes)#为 x 解出张量方程 a x = b
numpy.linalg.lstsq(a, b ,rcond)#将最小二乘解返回到线性矩阵方程。
numpy.linalg.inv(a)#计算逆矩阵。
numpy.linalg.pinv(a ,rcond)#计算矩阵的(Moore - Penrose)伪逆。
numpy.linalg.tensorinv(a ,ind)#计算 N 维数组的逆。
九、 其他数学工具
-
复数处理:
real(z)
,imag(z)
(实部与虚部)。 -
统计计算:
maximum
,minimum
(最值)。 -
插值与梯度:
interp
(线性插值)、gradient
(数值梯度)。
代码一览:
numpy.angle(z, deg)#返回复参数的角度。
numpy.real(val)#返回数组元素的实部。
numpy.imag(val)#返回数组元素的虚部。
numpy.conj(x)#按元素方式返回共轭复数。
numpy.convolve(a, v, mode)#返回线性卷积。
numpy.sqrt(x)#平方根。
numpy.cbrt(x)#立方根。
numpy.square(x)#平方。
numpy.absolute(x)#绝对值, 可求解复数。
numpy.fabs(x)#绝对值。
numpy.sign(x)#符号函数。
numpy.maximum(x1, x2)#最大值。
numpy.minimum(x1, x2)#最小值。
numpy.nan_to_num(x)#用 0 替换 NaN。
numpy.interp(x, xp, fp, left, right, period)#线性插值。
总结
NumPy 提供了覆盖基础数学到高级线性代数的完整工具集:
-
基础运算:三角函数、数值修约、求和求积。
-
复杂计算:矩阵乘法、特征值分解、张量运算。
-
工程应用:插值、梯度计算、最小二乘解。
相关文章:

机器学习常用包numpy篇(四)函数运算
目录 前言 一、三角函数 二、双曲函数 三、数值修约 四、 求和、求积与差分 五、 指数与对数 六、算术运算 七、 矩阵与向量运算 八、代数运算 九、 其他数学工具 总结 前言 Python 的原生运算符可实现基础数学运算(加减乘除、取余、取整、幂运算&#…...
CSS in JS
css in js css in js 的核心思想是:用一个 JS 对象来描述样式,而不是 css 样式表。 例如下面的对象就是一个用于描述样式的对象: const styles {backgroundColor: "#f40",color: "#fff",width: "400px",he…...
TCP 丢包恢复策略:代价权衡与优化迷局
网络物理层丢包是一种需要偿还的债务,可以容忍低劣的传输质量,这为 UDP 类服务提供了空间,而对于 TCP 类服务,可以用另外两类代价来支付: 主机端采用轻率的 GBN 策略恢复丢包,节省 CPU 资源,但…...
面经--C语言——内存泄漏、malloc和new的区别 .c文件怎么转换为可执行程序 uart和usart的区别 继承的访问权限总结
文章目录 内存泄漏预防内存泄漏的方法: malloc和new的区别.c文件怎么转换为可执行程序uart和usart的区别继承的访问权限总结访问控制符总结1. **public**:2. **protected**:3. **private**:继承类型: 内存泄漏 内存泄漏是指程序在运行时动态分配内存后&…...
Denavit-Hartenberg DH MDH坐标系
Denavit-Hartenberg坐标系及其规则详解 6轴协作机器人的MDH模型详细图_6轴mdh-CSDN博客 N轴机械臂的MDH正向建模,及python算法_mdh建模-CSDN博客 运动学3-----正向运动学 | 鱼香ROS 机器人学:MDH建模 - 哆啦美 - 博客园 机械臂学习——标准DH法和改进MDH…...

力扣动态规划-20【算法学习day.114】
前言 ###我做这类文章一个重要的目的还是记录自己的学习过程,我的解析也不会做的非常详细,只会提供思路和一些关键点,力扣上的大佬们的题解质量是非常非常高滴!!! 习题 1.网格中的最小路径代价 题目链接…...

计算机视觉-边缘检测
一、边缘 1.1 边缘的类型 ①实体上的边缘 ②深度上的边缘 ③符号的边缘 ④阴影产生的边缘 不同任务关注的边缘不一样 1.2 提取边缘 突变-求导(求导也是一种卷积) 近似,1(右边的一个值-自己可以用卷积做) 该点f(x,y)…...

文字加持:让 OpenCV 轻松在图像中插上文字
前言 在很多图像处理任务中,我们不仅需要提取图像信息,还希望在图像上加上一些文字,或是标注,或是动态展示。正如在一幅画上添加一个标语,或者在一个视频上加上动态字幕,cv2.putText 就是这个“文字魔术师”,它能让我们的图像从“沉默寡言”变得生动有趣。 今天,我们…...
掌握 HTML5 多媒体标签:如何在所有浏览器中顺利嵌入视频与音频
系列文章目录 01-从零开始学 HTML:构建网页的基本框架与技巧 02-HTML常见文本标签解析:从基础到进阶的全面指南 03-HTML从入门到精通:链接与图像标签全解析 04-HTML 列表标签全解析:无序与有序列表的深度应用 05-HTML表格标签全面…...

在Mac mini M4上部署DeepSeek R1本地大模型
在Mac mini M4上部署DeepSeek R1本地大模型 安装ollama 本地部署,我们可以通过Ollama来进行安装 Ollama 官方版:【点击前往】 Web UI 控制端【点击安装】 如何在MacOS上更换Ollama的模型位置 默认安装时,OLLAMA_MODELS 位置在"~/.o…...

【电脑系统】电脑突然(蓝屏)卡死发出刺耳声音
文章目录 前言问题描述软件解决方案尝试硬件解决方案尝试参考文献 前言 在 更换硬盘 时遇到的问题,有时候只有卡死没有蓝屏 问题描述 更换硬盘后,电脑用一会就卡死,蓝屏,显示蓝屏代码 UNEXPECTED_STORE_EXCEPTION 软件解决方案…...

Docker使用指南(二)——容器相关操作详解(实战案例教学,创建/使用/停止/删除)
目录 1.容器操作相关命令编辑 案例一: 案例二: 容器常用命令总结: 1.查看容器状态: 2.删除容器: 3.进入容器: 二、Docker基本操作——容器篇 1.容器操作相关命令 下面我们用两个案例来具体实操一…...
Java中的常见对象类型解析
在Java开发中,数据的组织和传递是一个重要的概念。为了确保代码的清晰性、可维护性和可扩展性,我们通常会根据不同的用途,设计和使用不同类型的对象。这些对象的作用各不相同,但它们共同为构建高效、模块化的软件架构提供支持。 …...
Dijkstra算法解析
Dijkstra算法,用于求解图中从一个起点到其他所有节点的最短路径。解决单源最短路径问题的有效方法。 条件 有向 带权路径 时间复杂度 O(n平方) 方法步骤 1 把图上的点分为两个集合 要求的起点 和除了起点之外的点 。能直达的写上权值 不…...

C++ Primer 多维数组
欢迎阅读我的 【CPrimer】专栏 专栏简介:本专栏主要面向C初学者,解释C的一些基本概念和基础语言特性,涉及C标准库的用法,面向对象特性,泛型特性高级用法。通过使用标准库中定义的抽象设施,使你更加适应高级…...

maven mysql jdk nvm node npm 环境安装
安装JDK 1.8 11 环境 maven环境安装 打开网站 下载 下载zip格式 解压 自己创建一个maven库 以后在idea 使用maven时候重新设置一下 这三个地方分别设置 这时候maven才算设置好 nvm 管理 npm nodejs nvm下载 安装 Releases coreybutler/nvm-windows GitHub 一键安装且若有…...

SQL Server中RANK()函数:处理并列排名与自然跳号
RANK()是SQL Server的窗口函数,为结果集中的行生成排名。当出现相同值时,后续排名会跳过被占用的名次,形成自然间隔。与DENSE_RANK()的关键区别在于是否允许排名值连续。 语法: RANK() OVER ([PARTITION BY 分组列]ORDER BY 排序…...

如何运行Composer安装PHP包 安装JWT库
1. 使用Composer Composer是PHP的依赖管理工具,它允许你轻松地安装和管理PHP包。对于JWT,你可以使用firebase/php-jwt这个库,这是由Firebase提供的官方库。 安装Composer(如果你还没有安装的话): 访问Co…...

最新功能发布!AllData数据中台核心菜单汇总
🔥🔥 AllData大数据产品是可定义数据中台,以数据平台为底座,以数据中台为桥梁,以机器学习平台为中层框架,以大模型应用为上游产品,提供全链路数字化解决方案。 ✨奥零数据科技官网:http://www.aolingdata.com ✨AllData开源项目:https://github.com/alldatacenter/…...

【OS】AUTOSAR架构下的Interrupt详解(上篇)
目录 前言 正文 1.中断概念分析 1.1 中断处理API 1.2 中断级别 1.3 中断向量表 1.4 二类中断的嵌套 1.4.1概述 1.4.2激活 1.5一类中断 1.5.1一类中断的实现 1.5.2一类中断的嵌套 1.5.3在StartOS之前的1类ISR 1.5.4使用1类中断时的注意事项 1.6中断源的初始化 1.…...

Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...

基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)
目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 编辑编辑 UDP的特征 socke函数 bind函数 recvfrom函数(接收函数) sendto函数(发送函数) 五、网络编程之 UDP 用…...

rknn toolkit2搭建和推理
安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 ,不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源(最常用) conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

Unity VR/MR开发-VR开发与传统3D开发的差异
视频讲解链接:【XR马斯维】VR/MR开发与传统3D开发的差异【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...