当前位置: 首页 > news >正文

如何优化垃圾回收机制?

垃圾回收机制

掌握 GC 算法之前,我们需要先弄清楚 3 个问题。第一,回收发生在哪里?第二,对象在
什么时候可以被回收?第三,如何回收这些对象?

回收发生在哪里?

    JVM 的内存区域中,程序计数器、虚拟机栈和本地方法栈这 3 个区域是线程私有的,随着
线程的创建而创建,销毁而销毁;栈中的栈帧随着方法的进入和退出进行入栈和出栈操作,
每个栈帧中分配多少内存基本是在类结构确定下来的时候就已知的,因此这三个区域的内存
分配和回收都具有确定性。
    那么垃圾回收的重点就是关注堆和方法区中的内存了,堆中的回收主要是对象的回收,方法
区的回收主要是废弃常量和无用的类的回收。

.对象在什么时候可以被回收?

那 JVM 又是怎样判断一个对象是可以被回收的呢? 一般一个对象不再被引用,就代表该对
象可以被回收。 目前有以下两种算法可以判断该对象是否可以被回收。
引用计数算法: 这种算法是通过一个对象的引用计数器来判断该对象是否被引用了。每当对
象被引用,引用计数器就会加 1;每当引用失效,计数器就会减 1。当对象的引用计数器的
值为 0 时,就说明该对象不再被引用,可以被回收了。这里强调一点,虽然引用计数算法
的实现简单,判断效率也很高,但它存在着对象之间相互循环引用的问题。
可达性分析算法: GC Roots 是该算法的基础,GC Roots 是所有对象的根对象,在 JVM
加载时,会创建一些普通对象引用正常对象。这些对象作为正常对象的起始点,在垃圾回收
时,会从这些 GC Roots 开始向下搜索,当一个对象到 GC Roots 没有任何引用链相连
时,就证明此对象是不可用的。目前 HotSpot 虚拟机采用的就是这种算法。
以上两种算法都是通过引用来判断对象是否可以被回收。在 JDK 1.2 之后,Java 对引用的
概念进行了扩充,将引用分为了以下四种:

GC 算法

JVM 提供了不同的回收算法来实现这一套回收机制,通常垃圾收集器的回收算法可以分为
以下几种:
如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现,JDK1.7
update14 之后 Hotspot 虚拟机所有的回收器整理如下(以下为服务端垃圾收集器):
其实在 JVM 规范中并没有明确 GC 的运作方式,各个厂商可以采用不同的方式实现垃圾收
集器。 我们可以通过 JVM 工具查询当前 JVM 使用的垃圾收集器类型, 首先通过 ps 命令查
询出经常 ID,再通过 jmap -heap ID 查询出 JVM 的配置信息,其中就包括垃圾收集器的
设置类型。

查看 & 分析 GC 日志

已知了性能衡量指标,现在我们需要通过工具查询 GC 相关日志,统计各项指标的信息。
首先,我们需要通过 JVM 参数预先设置 GC 日志,通常有以下几种 JVM 参数设置:
1 -XX:+PrintGC 输出 GC 日志
2 -XX:+PrintGCDetails 输出 GC 的详细日志
3 -XX:+PrintGCTimeStamps 输出 GC 的时间戳(以基准时间的形式)
4 -XX:+PrintGCDateStamps 输出 GC 的时间戳(以日期的形式,如 2013-05-04T21:53:59.234+0800)
5 -XX:+PrintHeapAtGC 在进行 GC 的前后打印出堆的信息
6 -Xloggc:../logs/gc.log 日志文件的输出路径

笔者推荐文章

  • 敏捷架构的 TOGAF 层次化迭代建模
  • 架构规划之如何划分任务边界?
  • 资源下载 技术架构,业务架构,数据架构,企业架构,行业技术方案 TOGAF | 跟着Byte学架构
  • 定制化企业架构元模型-CSDN博客
  • G1相对于CMS的的优势-CSDN博客

相关文章:

如何优化垃圾回收机制?

垃圾回收机制 掌握 GC 算法之前,我们需要先弄清楚 3 个问题。第一,回收发生在哪里?第二,对象在 什么时候可以被回收?第三,如何回收这些对象? 回收发生在哪里? JVM 的内存区域中&…...

beyond the ‘PHYSICAL‘ memory limit.问题处理

Container [pid5616,containerIDcontainer_e50_1734408743176_3027740_01_000006] is running 507887616B beyond the ‘PHYSICAL’ memory limit. Current usage: 4.5 GB of 4 GB physical memory used; 6.6 GB of 8.4 GB virtual memory used. Killing container. 1.增大map…...

Day36【AI思考】-表达式知识体系总览

文章目录 **表达式知识体系总览**回答1:**表达式知识体系****一、三种表达式形式对比****二、表达式转换核心方法****1. 中缀转后缀(重点)****2. 中缀转前缀** **三、表达式计算方法****1. 后缀表达式计算(栈实现)****…...

段错误(Segmentation Fault)调试

1. 使用 GDB(GNU Debugger) GDB 是一个强大的调试工具,可以帮助你逐步执行程序并检查变量状态。 编译时添加调试信息: gcc -g your_program.c -o your_program启动 GDB: gdb ./your_program运行程序: …...

每日Attention学习19——Convolutional Multi-Focal Attention

每日Attention学习19——Convolutional Multi-Focal Attention 模块出处 [ICLR 25 Submission] [link] UltraLightUNet: Rethinking U-shaped Network with Multi-kernel Lightweight Convolutions for Medical Image Segmentation 模块名称 Convolutional Multi-Focal Atte…...

LeetCode题练习与总结:三个数的最大乘积--628

一、题目描述 给你一个整型数组 nums ,在数组中找出由三个数组成的最大乘积,并输出这个乘积。 示例 1: 输入:nums [1,2,3] 输出:6示例 2: 输入:nums [1,2,3,4] 输出:24示例 3&a…...

Colorful/七彩虹 隐星P15 TA 24 原厂Win11 家庭版系统 带F9 Colorful一键恢复功能

Colorful/七彩虹 隐星P15 TA 24 原厂Win11 家庭中文版系统 带F9 Colorful一键恢复功能 自动重建COLORFUL RECOVERY功能 带所有随机软件和机型专用驱动 支持机型:隐星P15 TA 24 文件下载:asusoem.cn/745.html 文件格式:ISO 系统版本&…...

第二篇:多模态技术突破——DeepSeek如何重构AI的感知与认知边界

——从跨模态对齐到因果推理的工程化实践 在AI技术从单一模态向多模态跃迁的关键阶段,DeepSeek通过自研的多模态融合框架,在视觉-语言-语音的联合理解与生成领域实现系统性突破。本文将从技术实现层面,解构其跨模态表征学习、动态融合机制与…...

CTreeCtrl 设置图标

mfc界面修改真难受 使用CTreeCtrl 进行设置导航视图时,有时候需要设置图标,一般使用如下代码 m_TreeViewImages.DeleteImageList();UINT uiBmpId IDB_ICONLIST_TREE;CBitmap bmp; if (!bmp.LoadBitmap(uiBmpId)) return;BITMAP bmpObj; bmp.GetBitmap…...

在JAX-RS中获取请求头信息的方法

在JAX-RS中获取请求头信息的方法 HeaderParam注解,可以直接将请求头中的特定值注入到方法参数中,代码示例: import javax.ws.rs.GET; import javax.ws.rs.HeaderParam; import javax.ws.rs.Path; import javax.ws.rs.core.Response;Path(&q…...

Java 面试之结束问答

技术优化 线程池优化 设置最大线程数设置最小核心线程数设置额外线程存活时间选择线程池队列选择合适的线程池选择合适的饱和策略 锁优化 尽量不要锁住方法缩小同步代码块,只锁数据锁中尽量不要再包含锁将锁私有化,在内部管理锁进行适当的锁分解 HT…...

柔性数组与c/c++程序中内存区域的划分

1.柔性数组 1.1柔性数组的定义 柔性数组是指在结构体中定义的,其大小在编译时未确定,而在运行时动态分配的数组。这种数组允许结构体的大小根据需要动态变化。语法如下: struct D {int a;int arry1[0]; };struct F {int a;int arry2[]; };…...

mini-lsm通关笔记Week2Day7

项目地址:https://github.com/skyzh/mini-lsm 个人实现地址:https://gitee.com/cnyuyang/mini-lsm 在上一章中,您已经构建了一个完整的基于LSM的存储引擎。在本周末,我们将实现存储引擎的一些简单但重要的优化。欢迎来到Mini-LSM的…...

Typora免费使用

一.下载地址 https://typoraio.cn/ 二.修改配置文件 1.找到安装路径下的LicenseIndex.180dd4c7.4da8909c.chunk.js文件 文件路径为:安装路径\resources\page-dist\static\js\LicenseIndex.180dd4c7.4da8909c.chunk.js 将js中的 e.hasActivated"true"e.hasActiva…...

AI驱动的无线定位:基础、标准、最新进展与挑战

1. 论文概述 研究目标:本论文旨在综述AI在无线定位领域的应用,包括其基础理论、标准化进展、最新技术发展,以及面临的挑战和未来研究方向。主要发现: AI/ML 技术已成为提升无线定位精度和鲁棒性的关键手段,特别是在 3GPP 标准的推动下。论文系统性地分析了 AI 在 LOS/NLOS…...

苹果再度砍掉AR眼镜项目?AR真的是伪风口吗?

曾经,AR游戏一度异常火热,宝可梦go让多少人不惜翻墙都要去玩,但是也没过去几年,苹果被曝出再度砍掉了AR眼镜项目,面对着市场的变化,让人不禁想问AR真的是伪风口吗? 一、苹果再度砍掉AR眼镜项目&…...

18 大量数据的异步查询方案

在分布式的应用中分库分表大家都已经熟知了。如果我们的程序中需要做一个模糊查询,那就涉及到跨库搜索的情况,这个时候需要看中间件能不能支持跨库求交集的功能。比如mycat就不支持跨库查询,当然现在mycat也渐渐被摒弃了(没有处理笛卡尔交集的…...

DRM系列八:Drm之DRM_IOCTL_MODE_ADDFB2

本系列文章基于linux 5.15 在上一篇文章DRM系列七:Drm之DRM_IOCTL_MODE_CREATE_DUMB获取buf的handle和pitch之后,接着使用ioctl(fd, DRM_IOCTL_MODE_ADDFB2, &fb_cmd)创建一个新的帧缓冲区对象(framebuffer object),并将帧缓冲区对象与显…...

软件测试用例篇

设计测试用例是测试面试的必考题,务必好好学 1. 测试用例 测试用例的概念 测试⽤例(Test Case)是为了实施测试而向被测试的系统提供的⼀组集合,这组集合包含:测试环境、操作步骤、测试数据、预期结果等要素。 设计测试⽤…...

PopupMenuButton组件的功能和用法

文章目录 1 概念介绍2 使用方法3 示例代码 我们在上一章回中介绍了Sliver综合示例相关的内容,本章回中将介绍PopupMenuButton组件.闲话休提,让我们一起Talk Flutter吧。 1 概念介绍 我们在本章回中介绍的PopupMenuButton组件位于AppBar右侧,…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

uniapp中使用aixos 报错

问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...