6S模型的编译问题解决
使用python处理遥感光谱数据,免不了进行大气校正,基本上免费的就是使用Py6s,而py6s库只是一个接口,还需要自己配置6S模型,可以查到很多资料,6S模型是古老的fortran语言写的,基本配置流程就是安装 Fortran 77 编译器+UNIX工具,然后下载6S模型,用g77编译成exe文件给py6s调用(参考PY6S说明文档)。但对于曾经被C++环境配置搞崩溃的代码小白来说,这无疑是一个难过的坎,可是之前的资源卫星02D光谱数据处理软件已经基本完成,就差这一步了,放弃就太可惜了,花了半天时间确认没有更简单的替代方案了,还是硬着头皮开始搞。
但是跟着调研的资料一步步弄不是很顺利,比如g77编译器找不到(添加环境变量后,需要重启终端),找到g77编译器后编译频繁出错,利用AI修改了多轮makefile都不成功,更换了gfortran也不行。基本上是两种问题不停的重复。
用gfortran编译的错误提示如下:
Warning: Deleted feature: ASSIGN statement at (1)
AKTOOL.f:629:72:
629 | assign 48 to l4
用g77编译的错误如下:
g77 -O -O -c -o AKTOOL.o AKTOOL.f
C:\Users\MSI-NB\AppData\Local\Temp\ccIVjaaa.s: Assembler messages:
C:\Users\MSI-NB\AppData\Local\Temp\ccIVjaaa.s:19: Error: invalid instruction suffix for `push'
C:\Users\MSI-NB\AppData\Local\Temp\ccIVjaaa.s:23: Error: invalid instruction suffix for `push'
C:\Users\MSI-NB\AppData\Local\Temp\ccIVjaaa.s:24: Error: invalid instruction suffix for `push'
C:\Users\MSI-NB\AppData\Local\Temp\ccIVjaaa.s:28: Error: invalid instruction suffix for `push'
C:\Users\MSI-NB\AppData\Local\Temp\ccIVjaaa.s:29: Error: invalid instruction suffix for `push'
C:\Users\MSI-NB\AppData\Local\Temp\ccIVjaaa.s:34: Error: invalid instruction suffix for `push'
C:\Users\MSI-NB\AppData\Local\Temp\ccIVjaaa.s:35: Error: invalid instruction suffix for `push'
C:\Users\MSI-NB\AppData\Local\Temp\ccIVjaaa.s:39: Error: invalid instruction suffix for `push'
C:\Users\MSI-NB\AppData\Local\Temp\ccIVjaaa.s:40: Error: invalid instruction suffix for `push'
如果你也遇到这样的问题,那基本上查到的攻略都不行。最后在github上找了一个6S模型的复制版本,并且针对更高级的gfortran编译器调整了makefile文件,我简单看了一下makefile内容,确实是使用gfortran编译器,感觉有点靠谱,尝试看一下居然成功了,虽然也提示了小错误,但是至少编译成功了。为了验证编译是否正确(毕竟还是出现错误了),把exe文件拷贝到官网下载的文件夹中,用如下代码测试
sixs.exe < ..\Examples\Example_In_1.txt
体验一下成功的喜悦吧:
总结:
1.很多教程都行不通
2.github上下载6s模型satelligence / 6SV1.1 · GitLab
3.使用gfortran编译器(我下载的是这个版本,在线安装的版本总是出错)
4.使用官网6s模型文件夹验证编译是否成功
如果编译不成功可以直接下载执行文件
相关文章:

6S模型的编译问题解决
使用python处理遥感光谱数据,免不了进行大气校正,基本上免费的就是使用Py6s,而py6s库只是一个接口,还需要自己配置6S模型,可以查到很多资料,6S模型是古老的fortran语言写的,基本配置流程就是安装…...

C++11详解(二) -- 引用折叠和完美转发
文章目录 2. 右值引用和移动语义2.6 类型分类(实践中没什么用)2.7 引用折叠2.8 完美转发2.9 引用折叠和完美转发的实例 2. 右值引用和移动语义 2.6 类型分类(实践中没什么用) C11以后,进一步对类型进行了划分&#x…...

实验十四 EL和JSTL
实验十四 EL和JSTL 一、实验目的 1、掌握EL表达式的使用 2、掌握JSTL的使用 二、实验过程 1、在数据库Book中建立表Tbook,包含图书ID,图书名称,图书价格。实现在bookQuery.jsp页面中模糊查询图书,如果图书的价格在50元以上&#…...

为什么在springboot中使用autowired的时候它黄色警告说不建议使用字段注入
byType找到多种实现类导致报错 Autowired: 通过byType 方式进行装配, 找不到或是找到多个,都会抛出异常 我们在单元测试中无法进行字段注入 字段注入通常是 private 修饰的,Spring 容器通过反射为这些字段注入依赖。然而,在单元测试中&…...

DeepSeek大模型介绍、本地化部署与使用!【AI大模型】
一、DeepSeek 是什么? 1.技术定位 专注大模型与AGI研究,开发高性能基座模型(如 DeepSeek LLM 系列),支持长文本、多模态、代码生成等复杂任务。 提供开源模型(如 DeepSeek-MoE、DeepSeek-V2)…...

备考蓝桥杯嵌入式4:使用LCD显示我们捕捉的PWM波
上一篇博客我们提到了定时器产生PWM波,现在,我们尝试的想要捕获我们的PWM波,测量它的频率,我们应该怎么做呢?答案还是回到我们的定时器上。 我们知道,定时器是一个高级的秒表(参考笔者的比喻&a…...
智能化转型2.0:从“工具应用”到“价值重构”
过去几年,“智能化”从一个模糊的概念逐渐成为企业发展的核心议题。2024年,随着生成式AI、大模型、智能体等技术的爆发式落地,中国企业正式迈入智能化转型的2.0时代。这一阶段的核心特征是从单一场景的“工具应用”转向全链条的“价值重构”&…...

机器学习之数学基础:线性代数、微积分、概率论 | PyTorch 深度学习实战
前一篇文章,使用线性回归模型逼近目标模型 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started 本篇文章内容来自于 强化学习必修课:引领人工智能新时代【梗直哥瞿炜】 线性代数、微积分、概率论 …...

9.PPT:儿童孤独症介绍【22】
目录 NO12345 NO6789 NO12345 1-3张素材.txt中的大纲→素材文档PPT.pptx设计→主题→积分字体:幻灯片母版在幻灯片母版右上角的相同位置插入任一剪贴画,改变该剪贴画的图片样式、为其重新着色,并使其不遮挡其他文本或对象 开始→版式动画…...

离散浣熊优化算法(DCOA)求解大规模旅行商问题(Large-Scale Traveling Salesman Problem,LTSP),MATLAB代码
大规模旅行商问题(Large-Scale Traveling Salesman Problem,LTSP)是经典旅行商问题(TSP)在规模上的扩展,是一个具有重要理论和实际意义的组合优化问题: 一、问题定义 给定一组城市和它们之间的…...
Java 引入和使用jcharset,支持UTF-7字符集
一、背景说明 Java标准库不直接支持UTF-7字符集,但通过我们可以使用第三方库jcharset方便地处理UTF-7编码的数据。 二、引入说明 JDK8及以下版本,我们将jcharset.jar并将其放到${JAVA_HOME}/jre/lib/ext/下即可完成引入。 JDK17及以后版本,对…...
rust安装笔记
安装笔记 安装加速cargo 国内源nightly版本安装其他目标将现有项目迁移到新版本升级 安装加速 export RUSTUP_UPDATE_ROOT"https://mirrors.ustc.edu.cn/rust-static/rustup" export RUSTUP_DIST_SERVERhttps://mirrors.tuna.tsinghua.edu.cn/rustup curl --proto h…...

扣子平台的选择器节点:让智能体开发更简单,扣子免费系列教程(17)
欢迎来到涛涛聊AI。今天,我们来聊聊一个非常实用的工具——扣子平台的选择器节点。即使你不是计算机专业人员,但对计算机操作比较熟悉,这篇文章也能帮你快速上手。我们会从基础知识讲起,一步步带你了解选择器节点的使用方法和应用…...
Ubuntu 下 nginx-1.24.0 源码分析 - ngx_sprintf_num 函数
ngx_sprintf_num 声明就在 ngx_string.c 的开头 static u_char *ngx_sprintf_num(u_char *buf, u_char *last, uint64_t ui64,u_char zero, ngx_uint_t hexadecimal, ngx_uint_t width); ngx_sprintf_num 实现 static u_char * ngx_sprintf_num(u_char *buf, u_char *last,…...
Vue的状态管理:用响应式 API 做简单状态管理、状态管理库(Pinia )
文章目录 引言单向数据流多个组件共享一个共同的状态I 用响应式 API 做简单状态管理使用 reactive()创建一个在多个组件实例间共享的响应式对象使用ref()返回一个全局状态II 状态管理库Pinia枚举状态管理引言 单向数据流 每一个 Vue 组件实例都在“管理”它自己的响应式状态了…...

AI工具如何辅助写文章(科研版)
文章总览:[YuanDaiMa2048博客文章总览](https://blog.csdn.net/2301_79288416/article/details/137397359?spm=1001.2014.3001.5501)https://blog.csdn.net/2301_79288416/article/details/137397359?spm=1001.2014.3001.5501 在科研领域,撰写论文是一个复杂且耗时的过程。…...
LEED绿色建筑认证的重要意义
LEED(Leadership in Energy and Environmental Design)绿色建筑认证由美国绿色建筑委员会(USGBC)开发,是全球广泛认可的绿色建筑评估体系。其重要意义体现在以下几个方面: 1. 环境保护 资源节约࿱…...
阿里云 ubuntu22.04 中国区节点安装 Docker
下面是一份在 Ubuntu 22.04 (Jammy) 上,通过阿里云镜像源来安装并配置 Docker 的详细步骤示例,可在中国区阿里云节点使用: 一、卸载旧版本 (如已安装) 如果系统中已经安装了旧版 Docker (可能是 docker、docker-engine、docker.io、containe…...
【kafka的零拷贝原理】
kafka的零拷贝原理 一、零拷贝技术概述二、Kafka中的零拷贝原理三、零拷贝技术的优势四、零拷贝技术的实现细节五、注意事项一、零拷贝技术概述 零拷贝(Zero-Copy)是一种减少数据拷贝次数,提高数据传输效率的技术。 在传统的数据传输过程中,数据需要在用户态和内核态之间…...

Linux环境部署DeepSeek大模型
一、背景 【DeepSeek 深度求索】这个春节给了世界一个重磅炸弹,弄得美国都睡不好觉。这次与以往不同,之前我们都是跟随着美国的AI人工智能,现在DeepSeek通过算法上的优化,大大降低了训练模型所需的成本以及时间,短期造…...

Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...

JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...