当前位置: 首页 > news >正文

Spark--算子执行原理

一、sortByKey

  SortByKey是一个transformation算子,但是会触发action,因为在sortByKey方法内部,会对每个分区进行采样,构建分区规则(RangePartitioner)。

内部执行流程

1、创建RangePartitioner part,用于构建分区规则。

  Part可以根据指定的分区数量和排序方式,确定每个下游分区的上界,并为每个key分配正确的分区编号。数据在shuffle到本地磁盘的过程中,会记录目标分区的信息,确保下游分区能够正确拉取对应分区的数据。

2、根据part创建ShuffleRDD,对原始RDD按key重新分区。

3、shuffle到本地磁盘的临时文件(包含数据文件和索引文件)。

4、下游分区拉取对应分区的数据。

RangePatitioner工作原理

(1)确定下游每个分区的上界。

  对每个上游分区采样,确定数据的大致范围,再根据传入的分区数或者默认分区数确定分区边界。

(2)将rdd中的每个key调用getPartition函数,从而获取其应归属的分区。

①若目标分区数较小(128),采用线性查找;
②若超过128,采用二分查找:
  如果键小于范围的最小界限,它将分配到第一个分区。
  如果键大于所有范围界限,它将分配到最后一个分区。
  对于在某个范围中间的键,getPartition 使用二分查找方法找到合适的分区。这里根据范围边界数组 (rangeBounds) 和键值(k)进行比较,返回对应的分区索引。

二、join

内部执行流程

1、接收其他RDD作为参数

  默认使用当前有效的最大分区器,如果没有,新建一个HashPartitioner作为分区器。

2、将具有相同key的value进行联结(cogroup)

  (返回一个二元组(K, (Iterable[V1], Iterable[V2]))),若某个rdd没有该key对应的value,Iterable为空。

3、将每个key对应的两个Iterator中的元素进行笛卡尔积,每一对结果作为新的value,与key组成新的二元组返回。

三、map & mapPartitions & mapPartitionsWithIndex & flatMap

1、map

内部执行流程

(1)将函数作为参数传入;
(2)对f删除不必要的引用,检查是否能够被序列化,是否存在闭包问题;
(3)创建一个MapPartitionsRDD,将每个迭代器执行 f 的逻辑后返回。

特点

(1)每处理一条数据,就调用一次f,每一条数据都是一个迭代器。
(2)无法直接得知分区编号,但是可以通过如下方式获取:

val index = TaskContext.getPartitionId()

(3)返回迭代器。

2、mapPartitions

特点

(1)以分区为单位对数据调用f,一个分区就是一个迭代器。
(2)返回迭代器和partitioner。

3、mapPartitionsWithIndex

特点

(1)以分区为单位对数据调用f,一个分区就是一个迭代器。
(2)返回分区编号和迭代器

4、flatMap

  通过TraversableOnce特征,逐个处理rdd中的每个元素,然后将处理过的元素组成新的rdd返回。

四、groupByKey & groupBy

1、groupByKey (k, CompactBuffer(v,v,v,v) )

内部执行流程

1、调用 combineByKeyWithClassTag将所有相同的key合并到CompactBuffer中,并根据指定的partitioner进行分组;
2、返回一个新的rdd,每个key 对应的value被聚合成一个CompactBuffer;
3、将合并后的rdd转换为RDD[(K, Iterable[V])]]。

partitioner为HashPartitioner

  可以看到,HashPartitioner为key分配新分区号的方式是key的hashCode值 % 下游分区数,这意味着相同key的数据一定会被分配到同一台机器的同一个partition的同一个组里面。

2、groupBy ( k, CompactBuffer( (k,v),(k,v),(k,v),(k,v) ) )

内部执行流程

1、将f函数作为参数传入;
2、对f删除不必要的引用,检查是否能够被序列化,是否存在闭包问题;
3、将rdd的每个元素调用f后的值作为key,元素本身作为value,得到的二元组调用groupByKey进行分组。

  源rdd在Driver端被创建和调用,对rdd进行操作,本质上是对rdd的每个partition进行操作,而每个partition对应一个task,task就会对这个partition对应的Iterator进行相应的操作。
  算子被调用,真正执行时会调用compute方法。真正执行具体是指task被分配到executor的线程池中时,compute方法被iterator调用。

3、groupBy VS groupByKey

  groupBy更灵活,但在shuffle时传输的数据更多(groupBy返回 ( k, CompactBuffer( (k,v),(k,v),(k,v),(k,v) ) );而groupByKey返回 (k, CompactBuffer(v,v,v,v) ) )。

五、reduceByKey & combinByKey

1、reduceByKey

内部执行流程

1、调用 combineByKeyWithClassTag,将分区内相同key的value应用传入的函数,再将分区间相同key的value应用同一个传入的函数;
2、返回一个新的rdd。

2、combineByKey


  combineByKey的内部执行流程与reduceByKey是一样的,唯一不同的是combineByKey分区间应用的函数与分区内应用的函数不同。

3、性能分析

ReduceByKey VS CombineByKey

  combineByKey更灵活,因为其支持分别指定分区内和分区间的聚合逻辑,而reduceByKey分区内和分区间使用一样的聚合逻辑。

reduceByKey VS groupByKey

  reduceByKey的效率更高,因为reduceByKey在map端会进行局部聚合,因此在shuffle时传输的数据更少。

六、foldByKey & aggregateByKey

1、foldByKey

内部执行流程

(1)调用 combineByKeyWithClassTag,先将初始值应用函数,再将分区内相同key的value应用传入的函数,最后将分区间相同key的value应用同一个传入的函数;
(2)返回一个新的rdd。

2、aggregateByKey


  foldByKey 的内部执行流程与 aggregateByKey 是一样的,唯一不同的是 aggregateByKey 分区间应用的函数与分区内应用的函数不同。

3、foldByKey 与 aggregateByKey的区别

  foldByKey局部和全局使用相同的聚合逻辑;aggregateByKey局部和全局使用不同的聚合逻辑。

相关文章:

Spark--算子执行原理

一、sortByKey SortByKey是一个transformation算子,但是会触发action,因为在sortByKey方法内部,会对每个分区进行采样,构建分区规则(RangePartitioner)。 内部执行流程 1、创建RangePartitioner part&…...

事件驱动架构(EDA)

事件驱动架构(Event-Driven Architecture, EDA)是一种软件架构模式,其中系统的行为由事件的产生和处理驱动。在这种架构中,系统的组件通过事件进行交互,而不是通过直接的调用或者请求响应方式。 关键概念 事件&#x…...

C++ 入门速通-第5章【黑马】

内容来源于:黑马 集成开发环境:CLion 先前学习完了C第1章的内容: C 入门速通-第1章【黑马】-CSDN博客 C 入门速通-第2章【黑马】-CSDN博客 C 入门速通-第3章【黑马】-CSDN博客 C 入门速通-第4章【黑马】-CSDN博客 下面继续学习第5章&…...

2025春招,深度思考MyBatis面试题

大家好,我是V哥,2025年的春招马上就是到来,正在准备求职的朋友过完年,也该收收心,好好思考一下自己哪些技术点还需要补一补了,今天 V 哥要跟大家聊的是MyBatis框架的问题,站在一个高级程序员的角…...

排序算法--冒泡排序

冒泡排序虽然简单&#xff0c;但在实际应用中效率较低&#xff0c;适合小规模数据或教学演示。 // 冒泡排序函数 void bubbleSort(int arr[], int n) {for (int i 0; i < n - 1; i) { // 外层循环控制排序轮数for (int j 0; j < n - i - 1; j) { // 内层循环控制每轮比…...

简易C语言矩阵运算库

参考网址&#xff1a; 异想家纯C语言矩阵运算库 - Sandeepin - 博客园 这次比opencv快⑥倍&#xff01;&#xff01;&#xff01; 参考上述网址&#xff0c;整理了一下代码&#xff1a; //main.c#include <stdio.h> #include <stdlib.h> #include <string.h…...

通过C/C++编程语言实现“数据结构”课程中的链表

引言 链表(Linked List)是数据结构中最基础且最重要的线性存储结构之一。与数组的连续内存分配不同,链表通过指针将分散的内存块串联起来,具有动态扩展和高效插入/删除的特性。本文将以C/C++语言为例,从底层原理到代码实现,手把手教你构建完整的链表结构,并深入探讨其应…...

【分布式架构理论3】分布式调用(2):API 网关分析

文章目录 一、API 网关的作用1. 业务层面&#xff1a;简化调用复杂性2. 系统层面&#xff1a;屏蔽客户端调用差异3. 其他方面&#xff1a; 二、API 网关的技术原理1. 协议转换2. 链式处理3. 异步请求机制1. Zuul1&#xff1a;同步阻塞处理2. Zuul2&#xff1a;异步非阻塞处理 三…...

基于Kamailio、MySQL、Redis、Gin、Vue.js的微服务架构

每个服务使用一台独立的服务器的可行部署方案&#xff0c;尤其是在高并发、高可用性要求较高的场景中。这种方案通常被称为分布式部署或微服务架构。以下是针对您的VoIP管理系统&#xff08;基于Kamailio、MySQL、Redis、Gin、Vue.js&#xff09;的详细分析和建议。 1. 分布式部…...

6S模型的编译问题解决

使用python处理遥感光谱数据&#xff0c;免不了进行大气校正&#xff0c;基本上免费的就是使用Py6s&#xff0c;而py6s库只是一个接口&#xff0c;还需要自己配置6S模型&#xff0c;可以查到很多资料&#xff0c;6S模型是古老的fortran语言写的&#xff0c;基本配置流程就是安装…...

C++11详解(二) -- 引用折叠和完美转发

文章目录 2. 右值引用和移动语义2.6 类型分类&#xff08;实践中没什么用&#xff09;2.7 引用折叠2.8 完美转发2.9 引用折叠和完美转发的实例 2. 右值引用和移动语义 2.6 类型分类&#xff08;实践中没什么用&#xff09; C11以后&#xff0c;进一步对类型进行了划分&#x…...

实验十四 EL和JSTL

实验十四 EL和JSTL 一、实验目的 1、掌握EL表达式的使用 2、掌握JSTL的使用 二、实验过程 1、在数据库Book中建立表Tbook&#xff0c;包含图书ID&#xff0c;图书名称&#xff0c;图书价格。实现在bookQuery.jsp页面中模糊查询图书&#xff0c;如果图书的价格在50元以上&#…...

为什么在springboot中使用autowired的时候它黄色警告说不建议使用字段注入

byType找到多种实现类导致报错 Autowired: 通过byType 方式进行装配, 找不到或是找到多个&#xff0c;都会抛出异常 我们在单元测试中无法进行字段注入 字段注入通常是 private 修饰的&#xff0c;Spring 容器通过反射为这些字段注入依赖。然而&#xff0c;在单元测试中&…...

DeepSeek大模型介绍、本地化部署与使用!【AI大模型】

一、DeepSeek 是什么&#xff1f; 1.技术定位 专注大模型与AGI研究&#xff0c;开发高性能基座模型&#xff08;如 DeepSeek LLM 系列&#xff09;&#xff0c;支持长文本、多模态、代码生成等复杂任务。 提供开源模型&#xff08;如 DeepSeek-MoE、DeepSeek-V2&#xff09;…...

备考蓝桥杯嵌入式4:使用LCD显示我们捕捉的PWM波

上一篇博客我们提到了定时器产生PWM波&#xff0c;现在&#xff0c;我们尝试的想要捕获我们的PWM波&#xff0c;测量它的频率&#xff0c;我们应该怎么做呢&#xff1f;答案还是回到我们的定时器上。 我们知道&#xff0c;定时器是一个高级的秒表&#xff08;参考笔者的比喻&a…...

智能化转型2.0:从“工具应用”到“价值重构”

过去几年&#xff0c;“智能化”从一个模糊的概念逐渐成为企业发展的核心议题。2024年&#xff0c;随着生成式AI、大模型、智能体等技术的爆发式落地&#xff0c;中国企业正式迈入智能化转型的2.0时代。这一阶段的核心特征是从单一场景的“工具应用”转向全链条的“价值重构”&…...

机器学习之数学基础:线性代数、微积分、概率论 | PyTorch 深度学习实战

前一篇文章&#xff0c;使用线性回归模型逼近目标模型 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started 本篇文章内容来自于 强化学习必修课&#xff1a;引领人工智能新时代【梗直哥瞿炜】 线性代数、微积分、概率论 …...

9.PPT:儿童孤独症介绍【22】

目录 NO12345​ NO6789 NO12345 1-3张素材.txt中的大纲→素材文档PPT.pptx设计→主题→积分字体&#xff1a;幻灯片母版在幻灯片母版右上角的相同位置插入任一剪贴画&#xff0c;改变该剪贴画的图片样式、为其重新着色&#xff0c;并使其不遮挡其他文本或对象 开始→版式动画…...

离散浣熊优化算法(DCOA)求解大规模旅行商问题(Large-Scale Traveling Salesman Problem,LTSP),MATLAB代码

大规模旅行商问题&#xff08;Large-Scale Traveling Salesman Problem&#xff0c;LTSP&#xff09;是经典旅行商问题&#xff08;TSP&#xff09;在规模上的扩展&#xff0c;是一个具有重要理论和实际意义的组合优化问题&#xff1a; 一、问题定义 给定一组城市和它们之间的…...

Java 引入和使用jcharset,支持UTF-7字符集

一、背景说明 Java标准库不直接支持UTF-7字符集&#xff0c;但通过我们可以使用第三方库jcharset方便地处理UTF-7编码的数据。 二、引入说明 JDK8及以下版本&#xff0c;我们将jcharset.jar并将其放到${JAVA_HOME}/jre/lib/ext/下即可完成引入。 JDK17及以后版本&#xff0c;对…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...