当前位置: 首页 > news >正文

中位数定理:小试牛刀> _ <2025牛客寒假1

给定数轴上的n个点,找出一个到它们的距离之和尽量小的点(即使我们可以选择不是这些点里的点,我们还是选择中位数的那个点最优)
结论:这些点的中位数就是目标点。可以自己枚举推导(很好想)
(对于 点的数量为奇数,是排序之后最中间的数 ,对于点的数量为偶数的情况下,中间两个点 都可以,他俩的答案是相同的,可以简单的画图证明,或者直接抽象一点的想:假设这两个点分别为A B他们之间的距离为d,A相对于B 来说,左侧的点都减少d ,右侧的点都增加d .又因为A左侧的点的个数等于B 右侧的点,所以A B 的值相同)

板子题

void solve()
{int n;cin>>n;vector<int>a(n);for (int i=0;i<n;i++){cin>>a[i];}sort(a.begin(),a.end());int ans=0;for (int i =0;i<n;i++){ans+=abs(a[i]-a[n>>1]);}cout<<ans<<"\n";
}

添加链接描述
在这里插入图片描述
根据上边的引入,可以想到 将数组从中间分成两个子数组。
在考虑一种特殊的情况,就是我两个子数组的中位数相同,这样就不符合题目的要求。
这个时候,两个子数组的中位数肯定有一个要变一下。
有两种可能 左边的中位数-1 / 右边的中位数加1
(为啥左边的中位数不能+1 呢,因为加1 减1 对于数值是原本的中位数的数字 距离是相同的,但是我前边的数大概率有小于我原本中位数的数值,所以我中位数-1 ,距离小的数更进了)

#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
#define int long longvoid solve()
{int n;cin >> n;vector<int> a(n);for (int i = 0; i < n; i++){cin >> a[i];}sort(a.begin(), a.end());if (n == 2){if (a[0] != a[1]){cout << "0\n";}elsecout << '1' << "\n";return;}int len = n;len /= 2;int pos1 = len / 2;int pos2 = len + len / 2;int ans=0;if (a[pos1] != a[pos2]){//[0 len-1]for (int i=0;i<len;i++){ans+=abs(a[i]-a[pos1]);}for (int i=len;i<n;i++){ans+=abs(a[i]-a[pos2]);}}else{int tar=a[pos2]+1;for (int i=0;i<len;i++){ans+=abs(a[i]-a[pos1]);}for(int i=len;i<n;i++){ans+=abs(a[i]-tar);}int t=0;tar=a[pos1]-1;for (int i=0;i<len;i++){t+=abs(a[i]-tar);}for (int i=len;i<n;i++){t+=abs(a[i]-a[pos2]);}ans=min(ans,t);}cout<<ans<<'\n';
}
signed main()
{std::cin.tie(nullptr)->sync_with_stdio(false);int t = 1;cin >> t;while (t--){solve();}return 0;
}

相关文章:

中位数定理:小试牛刀> _ <2025牛客寒假1

给定数轴上的n个点&#xff0c;找出一个到它们的距离之和尽量小的点&#xff08;即使我们可以选择不是这些点里的点&#xff0c;我们还是选择中位数的那个点最优&#xff09; 结论:这些点的中位数就是目标点。可以自己枚举推导&#xff08;很好想&#xff09; (对于 点的数量为…...

(2025,LLM,下一 token 预测,扩散微调,L2D,推理增强,可扩展计算)从大语言模型到扩散微调

Large Language Models to Diffusion Finetuning 目录 1. 概述 2. 研究背景 3. 方法 3.1 用于 LM 微调的高斯扩散 3.2 架构 4. 主要实验结果 5. 结论 1. 概述 本文提出了一种新的微调方法——LM to Diffusion (L2D)&#xff0c;旨在赋予预训练的大语言模型&#xff08;…...

如何开发一个大语言模型,开发流程及需要的专业知识

开发大型语言模型&#xff08;LLM&#xff09;是一个复杂且资源密集的过程&#xff0c;涉及多个阶段和跨学科知识。以下是详细的开发流程和所需专业知识指南&#xff1a; 一、开发流程 1. 需求分析与规划 目标定义&#xff1a;明确模型用途&#xff08;如对话、翻译、代码生成…...

【数据采集】基于Selenium采集豆瓣电影Top250的详细数据

基于Selenium采集豆瓣电影Top250的详细数据 Selenium官网:https://www.selenium.dev/blog/ 豆瓣电影Top250官网:https://movie.douban.com/top250 写在前面 实验目标:基于Selenium框架采集豆瓣电影Top250的详细数据。 电脑系统:Windows 使用软件:PyCharm、Navicat 技术需求…...

neo4j-在Linux中安装neo4j

目录 切换jdk 安装neo4j 配置neo4j以便其他电脑可以访问 切换jdk 因为我安装的jdk是1.8版本的&#xff0c;而我安装的neo4j版本为5.15,Neo4j Community 5.15.0 不支持 Java 1.8&#xff0c;它要求 Java 17 或更高版本。 所以我需要升级Java到17 安装 OpenJDK 17 sudo yu…...

多无人机--强化学习

这个是我对于我的大创项目的构思&#xff0c;随着时间逐渐更新 项目概要 我们的项目平台来自挑战杯揭绑挂帅的无人机对抗项目&#xff0c;但是在由于时间原因&#xff0c;并未考虑强化学习&#xff0c;所以现在通过大创项目来弥补遗憾 我们项目分为三部分&#xff0c;分为虚…...

UE制作2d游戏

2d免费资产: Free 2D Game Assets - CraftPix.net 需要用到PaperZD插件 官网下载后启用即可 导入png素材 然后全选 - 创建Sprite 创建 人物基类 设置弹簧臂和相机 弹簧臂设置成旋转-90 , 取消碰撞测试 设置子类Sprite 拖到场景中 绑定设置输入映射,让角色移动跳跃 神似卡拉比…...

说一下JVM管理的常见参数

Java虚拟机&#xff08;JVM&#xff09;有许多常见参数&#xff0c;用于控制其行为和性能。以下是一些常见的JVM参数及其说明&#xff1a; 1. 内存管理参数 -Xms<size> START 设置初始堆内存大小。例如&#xff0c;-Xms512m表示初始堆大小为512MB。 -Xmx<size>…...

【FPGA】 MIPS 12条整数指令【2】

目录 仿真 代码 完整代码 实现slt 仿真 ori r1,r0,1100h ori r2,r0,0020h ori r3,r0,ff00h ori r4,r0,ffffh addi r5,r0,ffff slt r6,r5,r4 slt r6,r4,r3 代码 EX Slt:regcData ($signed(regaData)<$signed(regbData))?1b1:1b0; ID Inst_slt:be…...

机器学习--python基础库之Matplotlib (2) 简单易懂!!!

python基础库之Matplotlib&#xff08;2&#xff09; python基础库之Matplotlib0 准备1 散点图的绘制2 柱状图绘制3 其他 python基础库之Matplotlib 上篇文章机器学习–python基础库之Matplotlib (1) 超级详细!!!主要讲解了python的基础库matplotlib中绘图的流程以及折线图的…...

mybatis plus 持久化使用技巧及场景

mybatis plus提供了很多强大的持久化工具&#xff0c;新手容易对这些工具使用困难&#xff0c;下面我总结了一下mybatis plus持久化的使用技巧及使用场景。 一、持久化 官方文档&#xff1a;https://baomidou.com/guides/data-interface/ &#xff08;一&#xff09;通过ser…...

JVM监控和管理工具

基础故障处理工具 jps jps(JVM Process Status Tool)&#xff1a;Java虚拟机进程状态工具 功能 1&#xff1a;列出正在运行的虚拟机进程 2&#xff1a;显示虚拟机执行主类(main()方法所在的类) 3&#xff1a;显示进程ID(PID&#xff0c;Process Identifier) 命令格式 jps […...

记录 | 基于MaxKB的文字生成视频

目录 前言一、安装SDK二、创建视频函数库三、调试更新时间 前言 参考文章&#xff1a;如何利用智谱全模态免费模型&#xff0c;生成大家都喜欢的图、文、视并茂的文章&#xff01; 自己的感想 本文记录了创建文字生成视频的函数库的过程。如果想复现本文&#xff0c;需要你逐一…...

生成式AI安全最佳实践 - 抵御OWASP Top 10攻击 (下)

今天小李哥将开启全新的技术分享系列&#xff0c;为大家介绍生成式AI的安全解决方案设计方法和最佳实践。近年来生成式 AI 安全市场正迅速发展。据IDC预测&#xff0c;到2025年全球 AI 安全解决方案市场规模将突破200亿美元&#xff0c;年复合增长率超过30%&#xff0c;而Gartn…...

现场流不稳定,EasyCVR视频融合平台如何解决RTSP拉流不能播放的问题?

视频汇聚EasyCVR安防监控视频系统采用先进的网络传输技术&#xff0c;支持高清视频的接入和传输&#xff0c;能够满足大规模、高并发的远程监控需求。平台灵活性强&#xff0c;支持国标GB/T 28181协议、部标JT808、GA/T 1400协议、RTMP、RTSP/Onvif协议、海康Ehome、海康SDK、大…...

文献阅读 250205-Global patterns and drivers of tropical aboveground carbon changes

Global patterns and drivers of tropical aboveground carbon changes 来自 <Global patterns and drivers of tropical aboveground carbon changes | Nature Climate Change> 热带地上碳变化的全球模式和驱动因素 ## Abstract: Tropical terrestrial ecosystems play …...

算法与数据结构(括号匹配问题)

思路 从题干可以看出&#xff0c;只要给出的括号对应关系正确&#xff0c;那么就可以返回true,否则返回false。这个题可以使用栈来解决 解题过程 首先从第一个字符开始遍历&#xff0c;如果是括号的左边&#xff08;‘&#xff08;‘&#xff0c;’[‘&#xff0c;’}‘&…...

订单状态监控实战:基于 SQL 的状态机分析与异常检测

目录 1. 背景与问题 2. 数据准备 2.1 表结构设计 3. 场景分析与实现 3.1 场景 1:检测非法状态转换...

C# 中记录(Record)详解

从C#9.0开始&#xff0c;我们有了一个有趣的语法糖&#xff1a;记录(record)   为什么提供记录&#xff1f; 开发过程中&#xff0c;我们往往会创建一些简单的实体&#xff0c;它们仅仅拥有一些简单的属性&#xff0c;可能还有几个简单的方法&#xff0c;比如DTO等等&#xf…...

YOLOv11-ultralytics-8.3.67部分代码阅读笔记-autobackend.py

autobackend.py ultralytics\nn\autobackend.py 目录 autobackend.py 1.所需的库和模块 2.def check_class_names(names): 3.def default_class_names(dataNone): 4.class AutoBackend(nn.Module): 1.所需的库和模块 # Ultralytics &#x1f680; AGPL-3.0 License …...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

智能职业发展系统:AI驱动的职业规划平台技术解析

智能职业发展系统&#xff1a;AI驱动的职业规划平台技术解析 引言&#xff1a;数字时代的职业革命 在当今瞬息万变的就业市场中&#xff0c;传统的职业规划方法已无法满足个人和企业的需求。据统计&#xff0c;全球每年有超过2亿人面临职业转型困境&#xff0c;而企业也因此遭…...

数据结构第5章:树和二叉树完全指南(自整理详细图文笔记)

名人说&#xff1a;莫道桑榆晚&#xff0c;为霞尚满天。——刘禹锡&#xff08;刘梦得&#xff0c;诗豪&#xff09; 原创笔记&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 上一篇&#xff1a;《数据结构第4章 数组和广义表》…...