【漫画机器学习】083.安斯库姆四重奏(Anscombe‘s quartet)

安斯库姆四重奏(Anscombe's Quartet)
1. 什么是安斯库姆四重奏?
安斯库姆四重奏(Anscombe's Quartet)是一组由统计学家弗朗西斯·安斯库姆(Francis Anscombe) 在 1973 年 提出的 四组数据集。它们的均值、方差、回归直线、相关系数等统计量几乎相同,但当绘制成图表时却呈现出完全不同的分布形态。
这个四重奏展示了数据可视化的重要性,表明仅凭统计数值不能全面反映数据的真实分布。
2. 数据集示例
安斯库姆的四个数据集如下,每个数据集包含 (x, y) 对 :
| 数据集 | xxx 值 | yyy 值 |
|---|---|---|
| 第一组 | 10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5 | 8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68 |
| 第二组 | 10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5 | 9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74 |
| 第三组 | 10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5 | 7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73 |
| 第四组 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 | 6.58, 5.76, 7.71, 8.84, 8.47, 7.04, 5.25, 5.56, 7.91, 6.89, 6.11 |
尽管这些数据集的均值、方差、相关系数、回归直线 近似相同,但它们的实际分布却大不相同。
3. 统计量分析
对每个数据集计算以下统计量,我们发现它们几乎相等:
- 均值:
- 方差:
- 相关系数:
- 回归直线:
尽管统计量相同,但它们的数据分布和图形表现却大相径庭。
4. 数据可视化
如果只看统计量,可能会认为四个数据集的分布类似。但当我们绘制散点图时,会看到完全不同的形态:
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd# Anscombe's Quartet 数据
anscombe = sns.load_dataset("anscombe")# 创建四个子图
fig, axes = plt.subplots(2, 2, figsize=(10, 8))
fig.suptitle("Anscombe's Quartet")# 遍历四个数据集并绘制散点图和回归直线
for i, ax in enumerate(axes.flatten(), 1):data = anscombe[anscombe['dataset'] == f'II{"" if i == 1 else i}']ax.scatter(data['x'], data['y'], label=f'Dataset {i}', color='blue', edgecolor='k')ax.set_title(f"Dataset {i}")# 绘制回归直线m, b = np.polyfit(data['x'], data['y'], 1)ax.plot(data['x'], m * data['x'] + b, color='red')plt.tight_layout()
plt.show()
5. 观察四个数据集的不同
从图中可以看出:
- 数据集 1:正常的线性回归数据分布。
- 数据集 2:呈现非线性关系,回归直线并不能很好地描述数据趋势。
- 数据集 3:大多数点与回归直线接近,但存在一个异常值(outlier)。
- 数据集 4:x 值恒定,数据呈现一条垂直线,回归模型毫无意义。
6. 重要性:统计数据 ≠ 数据特性
安斯库姆四重奏的核心思想是:
- 统计数值不能完全代表数据分布。必须配合数据可视化进行分析。
- 数据可视化可以揭示数据的模式,如线性关系、异常值、非线性分布等。
- 异常值可能极大地影响回归分析,不能仅依赖统计量进行判断。
7. 结论
- 仅依赖均值、方差、相关系数等统计数值,可能导致误导性的结论。
- 进行数据分析时,应结合可视化手段(如散点图、直方图等),直观检查数据的分布。
- 安斯库姆四重奏提醒我们,数据科学不只是数学统计,还包括数据探索与可视化。
8. 拓展:现代版安斯库姆四重奏
在 2017 年,Alberto Cairo 提出了“Datasaurus Dozen”,扩展了安斯库姆四重奏的思想。它展示了一组具有相同统计量但形态完全不同的数据集,其中包括:
- 恐龙形状
- 圆形分布
- 星形分布
- 水平线形分布
👉 核心思想仍然是:数据可视化远比仅依赖统计数值更重要。
9. 总结
| 主题 | 说明 |
|---|---|
| 安斯库姆四重奏 | 4 组数据集,统计特性相似但分布不同 |
| 均值、方差、相关系数 | 统计量不能完全代表数据特征 |
| 可视化的重要性 | 必须结合数据可视化(散点图等) |
| 数据分布差异 | 可能是非线性、异常值、特定形态 |
| 现代扩展 | “Datasaurus Dozen” 进一步说明数据可视化的重要性 |
🚀 数据分析不仅仅是计算统计量,数据可视化同样不可忽视!
相关文章:
【漫画机器学习】083.安斯库姆四重奏(Anscombe‘s quartet)
安斯库姆四重奏(Anscombes Quartet) 1. 什么是安斯库姆四重奏? 安斯库姆四重奏(Anscombes Quartet)是一组由统计学家弗朗西斯安斯库姆(Francis Anscombe) 在 1973 年 提出的 四组数据集。它们…...
TCP | RFC793
注:本文为 “ RFC793” 相关文章合辑。 RFC793-TCP 中文翻译 编码那些事儿已于 2022-07-14 16:02:16 修改 简介 翻译自: RFC 793 - Transmission Control Protocol https://datatracker.ietf.org/doc/html/rfc793 TCP 是一个高可靠的主机到主机之间…...
2025蓝桥杯JAVA编程题练习Day2
1.大衣构造字符串 问题描述 已知对于一个由小写字母构成的字符串,每次操作可以选择一个索引,将该索引处的字符用三个相同的字符副本替换。 现有一长度为 NN 的字符串 UU,请帮助大衣构造一个最小长度的字符串 SS,使得经过任意次…...
《解锁GANs黑科技:打造影视游戏的逼真3D模型》
在游戏与影视制作领域,逼真的3D模型是构建沉浸式虚拟世界的关键要素。从游戏中栩栩如生的角色形象,到影视里震撼人心的宏大场景,高品质3D模型的重要性不言而喻。随着人工智能技术的飞速发展,生成对抗网络(GANs…...
es match 可查 而 term 查不到 问题分析
es 匹配逻辑 根本:es 的匹配是基于token 的。检索的query和目标字段在token 层级上有交集才能检索成功。对同样的文本,使用不同的分词器,所得token 不同。es 默认的analyzer(分词器)是standard模式,即按字切分。 基本上…...
【OpenCV实战】基于 OpenCV 的多尺度与模板匹配目标跟踪设计与实现
文章目录 基于 OpenCV 的模板匹配目标跟踪设计与实现1. 摘要2. 系统概述3. 系统原理3.1 模板匹配的基本原理3.2 多尺度匹配 4. 逻辑流程4.1 系统初始化4.2 主循环4.3 逻辑流程图 5. 关键代码解析5.1 鼠标回调函数5.2 多尺度模板匹配 6. 系统优势与不足6.1 优势6.2 不足 7. 总结…...
将有序数组转换为二叉搜索树(力扣108)
这道题需要在递归的同时使用双指针。先找到一个区间的中间值,当作子树的父节点,再递归该中间值的左区间和右区间,用于生成该父节点的左子树和右子树。这就是此题的递归逻辑。而双指针就体现在每一层递归都要使用左指针和右指针来找到中间值。…...
开放式TCP/IP通信
一、1200和1200之间的开放式TCP/IP通讯 第一步:组态1214CPU,勾选时钟存储器 第二步:防护与安全里面连接机制勾选允许PUT/GET访问 第三步:添加PLC 第四步:点击网络试图,选中网口,把两个PLC连接起…...
S4 HANA (递延所得税传输)Deferred Tax Transfer - S_AC0_52000644
本文主要介绍在S4 HANA OP中S4 HANA (递延所得税传输)Deferred Tax Transfer - S_AC0_52000644的后台配置及前台操作。具体请参照如下内容: 目录 Deferred Tax Transfer - S_AC0_52000644 1. 后台配置 1.1 Business Transaction Events激活- FIBF 2. 前台操作 …...
如何从0开始做自动化测试?
自动化测试是使用软件工具在应用程序上自动运行测试的过程,无需任何人为干预。这可以通过减少手动测试的需要来保存时间并提高软件开发过程的效率。由于人为错误或不一致性,手动测试可能容易出错,这可能导致错误未被检测到。自动化测试通过…...
DeepSeek服务器繁忙问题的原因分析与解决方案
一、引言 随着人工智能技术的飞速发展,DeepSeek 等语言模型在众多领域得到了广泛应用。然而,在春节这段时间的使用过程中,用户常常遭遇服务器繁忙的问题,这不仅影响了用户的使用体验,也在一定程度上限制了模型的推广和…...
C#,入门教程(10)——常量、变量与命名规则的基础知识
上一篇: C#,入门教程(09)——运算符的基础知识https://blog.csdn.net/beijinghorn/article/details/123908269 C#用于保存计算数据的元素,称为“变量”。 其中一般不改变初值的变量,称为常变量,简称“常量”。 无论…...
宏观经济:信贷紧缩与信贷宽松、通货膨胀与通货紧缩以及经济循环的四个周期
目录 信贷紧缩与信贷宽松信贷紧缩信贷宽松信贷政策对经济影响当前政策环境 通货膨胀与通货紧缩通货膨胀通货紧缩通货膨胀与通货紧缩对比 经济循环的四个周期繁荣阶段衰退阶段萧条阶段复苏阶段经济周期理论解释经济周期类型 信贷紧缩与信贷宽松 信贷紧缩 定义:金融…...
分层解耦.
三层架构 controller:控制层,接收前端发送的请求,对请求进行处理,并响应数据 service:业务逻辑层,处理具体的业务逻辑 dao:数据访问层(Data Access Object)(持久层),负责数据访问操作,包括数据的增、删、改…...
JAVA异步的TCP 通讯-客户端
一、客户端代码示例 import java.io.IOException; import java.net.InetSocketAddress; import java.nio.ByteBuffer; import java.nio.channels.AsynchronousSocketChannel; import java.nio.channels.CompletionHandler; import java.util.concurrent.ExecutorService; impo…...
MySQL的存储引擎对比(InnoDB和MyISAM)
InnoDB 特点: 事务支持:InnoDB 是 MySQL 默认的事务型存储引擎,支持 ACID(原子性、一致性、隔离性、持久性)事务。行级锁定:支持行级锁,能够并发执行查询和更新操作,提升多用户环境…...
【2025-02-06】简单算法:相向双指针 盛最多水的容器 接雨水
📝前言说明: ●本专栏主要记录本人的基础算法学习以及LeetCode刷题记录,主要跟随B站博主灵茶山的视频进行学习,专栏中的每一篇文章对应B站博主灵茶山的一个视频 ●题目主要为B站视频内涉及的题目以及B站视频中提到的“课后作业”。…...
2.6-组合博弈入门
组合博弈入门 组合游戏 要求 有两个玩家;游戏的操作状态是一个有限的集合(比如:限定大小的棋盘);游戏双方轮流操作;双方的每次操作必须符合游戏规定;当一方不能将游戏继续进行的时候…...
【教学】推送docker仓库
引言 Docker Hub 这个最常见的公共 Docker 仓库为例,本文将介绍如何把本地 Docker 镜像推送到公共 Docker 仓库 1. 注册 Docker Hub 账号 如果你还没有 Docker Hub 账号,需要先在 Docker Hub 官网 进行注册。注册完成后,记住你的用户名和密…...
【大数据技术】本机PyCharm远程连接虚拟机Python
本机PyCharm远程连接虚拟机Python 注意:本文需要使用PyCharm专业版。 pycharm-professional-2024.1.4VMware Workstation Pro 16CentOS-Stream-10-latest-x86_64-dvd1.iso写在前面 本文主要介绍如何使用本地PyCharm远程连接虚拟机,运行Python脚本,提高编程效率。 注意: …...
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...
