当前位置: 首页 > news >正文

【华为OD-E卷 - 108 最大矩阵和 100分(python、java、c++、js、c)】

【华为OD-E卷 - 最大矩阵和 100分(python、java、c++、js、c)】

题目

给定一个二维整数矩阵,要在这个矩阵中选出一个子矩阵,使得这个子矩阵内所有的数字和尽量大,我们把这个子矩阵称为和最大子矩阵,子矩阵的选取原则是原矩阵中一块相互连续的矩形区域

输入描述

  • 输入的第一行包含2个整数n, m(1 <= n, m <= 10),表示一个n行m列的矩阵,下面有n行,每行有m个整数,同一行中,每2个数字之间有1个空格,最后一个数字后面没有空格,所有的数字的在[-1000, 1000]之间

输出描述

  • 输出一行一个数字,表示选出的和最大子矩阵内所有的数字和

用例

用例一:
输入:
3 4
-3 5 -1 5
2 4 -2 4
-1 3 -1 3
输出:
20

python解法

  • 解题思路:
  • 本代码的目标是在 n x m 的二维矩阵中找到最大子矩阵的和。
    该问题可以通过**Kadane’s Algorithm(卡丹算法)**优化解决。

解题步骤
输入处理:

读取 n 和 m,表示矩阵的行数和列数。
读取 n 行 m 列的矩阵,存入 grid。
最大子数组和 maxSumSubarray(arr):

该函数使用Kadane’s Algorithm 在一维数组 arr 上计算最大连续子数组和。
通过遍历 arr,维护当前最大子数组和 (curr_sum) 和 全局最大 (max_sum)。
枚举上下边界,计算最大子矩阵和 findMaxMatrixSum(matrix):

固定上边界 i,然后枚举下边界 j(i ≤ j < n)。
使用 compressed[k] 存储 i 到 j 之间的列和,将二维问题压缩为一维最大子数组和问题。
在 compressed 上调用 maxSumSubarray(compressed) 计算最大和。
返回 max_sum 作为最大子矩阵和

# 读取矩阵的行数(n) 和 列数(m)
n, m = map(int, input().split())
grid = [list(map(int, input().split())) for _ in range(n)]# 计算一维数组的最大子数组和 (Kadane's Algorithm)
def maxSumSubarray(arr):max_sum = arr[0]  # 记录全局最大子数组和curr_sum = arr[0] # 记录当前子数组和# 遍历数组,计算最大连续子数组和for val in arr[1:]:curr_sum = max(val, curr_sum + val)  # 选择是否包含之前的子数组max_sum = max(max_sum, curr_sum)  # 更新最大和return max_sum# 计算矩阵中的最大子矩阵和
def findMaxMatrixSum(matrix):max_sum = -float('inf')  # 记录最大子矩阵和# 遍历所有可能的上边界 ifor i in range(n):compressed = [0] * m  # 用于存储列压缩的数组# 遍历所有可能的下边界 jfor j in range(i, n):# 计算当前列的前缀和for k in range(m):compressed[k] += matrix[j][k]# 在压缩后的数组上求最大子数组和max_sum = max(max_sum, maxSumSubarray(compressed))return max_sum# 输出最大子矩阵和
print(findMaxMatrixSum(grid))

java解法

  • 解题思路
  • 本代码的目标是在 rows x cols 的二维矩阵中找到最大子矩阵的和。
    采用 Kadane’s Algorithm(卡丹算法) 进行优化计算。

解题步骤
读取输入

读取 rows 和 cols,表示矩阵的行数和列数。
读取 rows × cols 的矩阵,并存入 grid。
压缩行并使用 Kadane’s Algorithm 求最大子数组和

遍历所有可能的上边界 top,并向下扩展到下边界 bottom。
维护一个 colSum 数组,存储 top 到 bottom 之间的列和,将二维问题转换为一维最大子数组和问题。
在 colSum 上应用 Kadane’s Algorithm 计算最大子数组和。
返回 maxSum 作为最大子矩阵和

import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner input = new Scanner(System.in);// 读取矩阵的行数(rows) 和 列数(cols)int rows = input.nextInt();int cols = input.nextInt();// 读取矩阵数据int[][] grid = new int[rows][cols];for (int i = 0; i < rows; i++) {for (int j = 0; j < cols; j++) {grid[i][j] = input.nextInt();}}// 计算并输出最大子矩阵和System.out.println(findMaxSum(grid, rows, cols));}// 计算二维矩阵中的最大子矩阵和public static int findMaxSum(int[][] grid, int rows, int cols) {int maxSum = Integer.MIN_VALUE;// 枚举上边界 topfor (int top = 0; top < rows; top++) {int[] colSum = new int[cols]; // 列压缩数组,存储 top 到 bottom 之间的列和// 枚举下边界 bottomfor (int bottom = top; bottom < rows; bottom++) {// 计算 top 到 bottom 之间的列和for (int col = 0; col < cols; col++) {colSum[col] += grid[bottom][col];}// 在压缩后的数组上求最大子数组和(Kadane's Algorithm)maxSum = Math.max(maxSum, kadane(colSum));}}return maxSum; // 返回最大子矩阵和}// 使用 Kadane's Algorithm 计算一维数组的最大子数组和private static int kadane(int[] arr) {int maxCurrent = arr[0], maxGlobal = arr[0];// 遍历数组,计算最大连续子数组和for (int i = 1; i < arr.length; i++) {maxCurrent = Math.max(arr[i], maxCurrent + arr[i]); // 选择是否包含之前的子数组maxGlobal = Math.max(maxGlobal, maxCurrent); // 更新最大和}return maxGlobal;}
}

C++解法

  • 解题思路
  • 本代码的目标是在 rows × cols 的二维矩阵中找到最大子矩阵的和,使用 Kadane’s Algorithm(卡丹算法) 进行优化计算。

解题步骤
读取输入

读取 rows 和 cols,表示矩阵的行数和列数。
读取 rows × cols 的矩阵,并存入 grid。
Kadane’s Algorithm 求最大子数组和 kadane(arr)

计算一维数组 arr 上的最大连续子数组和,用于处理列压缩后的一维问题。
枚举上下边界,计算最大子矩阵和 findMaxSum(grid, rows, cols)

固定上边界 top,然后枚举下边界 bottom(top ≤ bottom < rows)。
使用 colSum[col] 存储 top 到 bottom 之间的列和,将二维问题压缩为一维最大子数组和问题。
在 colSum 上调用 kadane(colSum) 计算最大子数组和。
返回 maxSum 作为最大子矩阵和

#include <iostream>
#include <vector>
#include <climits>using namespace std;// 使用 Kadane's Algorithm 计算一维数组的最大子数组和
int kadane(const vector<int>& arr) {int maxCurrent = arr[0]; // 当前子数组的最大和int maxGlobal = arr[0];  // 记录全局最大子数组和// 遍历数组,计算最大连续子数组和for (int i = 1; i < arr.size(); i++) {maxCurrent = max(arr[i], maxCurrent + arr[i]); // 选择是否包含之前的子数组maxGlobal = max(maxGlobal, maxCurrent); // 更新最大和}return maxGlobal;
}// 计算二维矩阵中的最大子矩阵和
int findMaxSum(const vector<vector<int>>& grid, int rows, int cols) {int maxSum = INT_MIN; // 记录最大子矩阵和// 枚举上边界 topfor (int top = 0; top < rows; top++) {vector<int> colSum(cols, 0); // 列压缩数组,存储 top 到 bottom 之间的列和// 枚举下边界 bottomfor (int bottom = top; bottom < rows; bottom++) {// 计算 top 到 bottom 之间的列和for (int col = 0; col < cols; col++) {colSum[col] += grid[bottom][col];}// 在压缩后的数组上求最大子数组和(Kadane's Algorithm)maxSum = max(maxSum, kadane(colSum));}}return maxSum; // 返回最大子矩阵和
}int main() {int rows, cols;cin >> rows >> cols; // 读取矩阵的行数和列数// 读取矩阵数据vector<vector<int>> grid(rows, vector<int>(cols));for (int i = 0; i < rows; i++) {for (int j = 0; j < cols; j++) {cin >> grid[i][j];}}// 计算并输出最大子矩阵和cout << findMaxSum(grid, rows, cols) << endl;return 0;
}

C解法

  • 解题思路

更新中

JS解法

  • 解题思路

  • 本代码的目标是在 rows × cols 的二维矩阵中找到最大子矩阵的和,采用 Kadane’s Algorithm(卡丹算法) 进行优化计算。

解题步骤
读取输入

读取 rows 和 cols,表示矩阵的行数和列数。
读取 rows × cols 的矩阵,并存入 inputData 数组。
当 inputData.length === rows 时,调用 findMaxSum(grid, rows, cols) 计算最大子矩阵和。
Kadane’s Algorithm 求最大子数组和 kadane(arr)

计算一维数组 arr 上的最大连续子数组和,用于处理列压缩后的一维问题。
枚举上下边界,计算最大子矩阵和 findMaxSum(grid, rows, cols)

固定上边界 top,然后枚举下边界 bottom(top ≤ bottom < rows)。
使用 colSum[col] 存储 top 到 bottom 之间的列和,将二维问题压缩为一维最大子数组和问题。
在 colSum 上调用 kadane(colSum) 计算最大子数组和。
返回 maxSum 作为最大子矩阵和

const readline = require('readline');const rl = readline.createInterface({input: process.stdin,output: process.stdout
});let inputData = [];
let rows, cols;// 监听输入,每次读取一行
rl.on('line', (line) => {if (rows === undefined && cols === undefined) {// 读取第一行输入,获取矩阵的行数 (rows) 和列数 (cols)[rows, cols] = line.split(' ').map(Number);} else {// 读取矩阵数据,并存入 inputDatainputData.push(line.split(' ').map(Number));// 当所有行读取完毕时,计算最大子矩阵和if (inputData.length === rows) {const maxSum = findMaxSum(inputData, rows, cols);console.log(maxSum);rl.close();}}
});// 计算二维矩阵中的最大子矩阵和
function findMaxSum(grid, rows, cols) {let maxSum = Number.MIN_SAFE_INTEGER; // 记录最大子矩阵和// 枚举上边界 topfor (let top = 0; top < rows; top++) {let colSum = new Array(cols).fill(0); // 列压缩数组,存储 top 到 bottom 之间的列和// 枚举下边界 bottomfor (let bottom = top; bottom < rows; bottom++) {// 计算 top 到 bottom 之间的列和for (let col = 0; col < cols; col++) {colSum[col] += grid[bottom][col];}// 在压缩后的数组上求最大子数组和(Kadane's Algorithm)maxSum = Math.max(maxSum, kadane(colSum));}}return maxSum; // 返回最大子矩阵和
}// 使用 Kadane's Algorithm 计算一维数组的最大子数组和
function kadane(arr) {let maxCurrent = arr[0]; // 当前子数组的最大和let maxGlobal = arr[0];  // 记录全局最大子数组和// 遍历数组,计算最大连续子数组和for (let i = 1; i < arr.length; i++) {maxCurrent = Math.max(arr[i], maxCurrent + arr[i]); // 选择是否包含之前的子数组maxGlobal = Math.max(maxGlobal, maxCurrent); // 更新最大和}return maxGlobal;
}

注意:

如果发现代码有用例覆盖不到的情况,欢迎反馈!会在第一时间修正,更新。
解题不易,如对您有帮助,欢迎点赞/收藏

相关文章:

【华为OD-E卷 - 108 最大矩阵和 100分(python、java、c++、js、c)】

【华为OD-E卷 - 最大矩阵和 100分&#xff08;python、java、c、js、c&#xff09;】 题目 给定一个二维整数矩阵&#xff0c;要在这个矩阵中选出一个子矩阵&#xff0c;使得这个子矩阵内所有的数字和尽量大&#xff0c;我们把这个子矩阵称为和最大子矩阵&#xff0c;子矩阵的…...

【Reading Notes】Favorite Articles from 2025

文章目录 1、January2、February3、March4、April5、May6、June7、July8、August9、September10、October11、November12、December 1、January 极越之后&#xff0c;中国车市只会倒下更多人&#xff08;2025年01月01日&#xff09; 在这波枪林弹雨中&#xff0c;合资品牌中最…...

云计算行业分析

云计算作为数字经济的核心基础设施&#xff0c;未来十年将持续重塑全球科技格局&#xff0c;并渗透到几乎所有行业的数字化转型中。 一、云计算的发展潜力 1. 技术融合驱动爆发式创新 AI与云计算的深度耦合 - **智能云服务**&#xff1a;云厂商将提供预训练模型、自动化ML工…...

【Linux系统】线程:线程的优点 / 缺点 / 超线程技术 / 异常 / 用途

1、线程的优点 创建和删除线程代价较小 创建一个新线程的代价要比创建一个新进程小得多&#xff0c;删除代价也小。这种说法主要基于以下几个方面&#xff1a; &#xff08;1&#xff09;资源共享 内存空间&#xff1a;每个进程都有自己独立的内存空间&#xff0c;包括代码段…...

3.攻防世界 weak_auth

题目描述提示 是一个登录界面&#xff0c;需要密码登录 进入题目页面如下 弱口令密码爆破 用1 or 1 #试试 提示用admin登录 则尝试 用户名admin密码&#xff1a;123456 直接得到flag 常用弱口令密码&#xff08;可复制&#xff09; 用户名 admin admin-- admin or -- admin…...

代码随想录算法训练营| 二叉树总结

代码随想录 二叉树的理论基础&#xff1a;二叉树种类、存储方式、遍历方式、定义方式 二叉树遍历&#xff1a;深度优先和广度优先 二叉树属性&#xff1a;对称、深度、节点、平衡、路径、回溯 修改与构造&#xff1a;反转、构造、合并 涉及到二叉树的构造&#xff0c;无论普…...

Python OCR工具pytesseract识别数字验证码

直接下载地址&#xff1a;https://digi.bib.uni-mannheim.de/tesseract/ 找的最新版本&#xff1a; 我添加了math 跟chinese&#xff08;因为是国内网络的原因吧&#xff0c;下载都失败&#xff0c;所以不用选择&#xff0c;后面自己下载后&#xff0c;添加到相应目录就好&…...

SpringBoot开发(五)SpringBoot接收请求参数

1. SpringBoot接收请求参数 1.1. 获取参数的方式 &#xff08;1&#xff09;通过request对象获取参数   &#xff08;2&#xff09;RequestParam(针对请求头方式为x-www-form-ur lencoded)   &#xff08;3&#xff09;RequestBody(针对请求头方式为application/json)   …...

文件基础IO

理解"文件" 1-1 狭义理解 文件在磁盘里磁盘是永久性存储介质&#xff0c;因此文件在磁盘上的存储是永久性的磁盘是外设&#xff08;即是输出设备也是输入设备&#xff09;磁盘上的文件 本质是对文件的所有操作&#xff0c;都是对外设的输入和输出简称IO 1-2 广义理…...

05vue3实战-----配置项目代码规范

05vue3实战-----配置项目代码规范 1.集成editorconfig配置2.使用prettier工具2.1安装prettier2.2配置.prettierrc文件&#xff1a;2.3创建.prettierignore忽略文件2.4VSCode需要安装prettier的插件2.5VSCod中的配置2.6测试prettier是否生效 3.使用ESLint检测3.1VSCode需要安装E…...

八大排序算法细讲

目录 排序 概念 运用 常见排序算法 插入排序 直接插入排序 思想&#xff1a; 步骤&#xff08;排升序&#xff09;: 代码部分&#xff1a; 时间复杂度&#xff1a; 希尔排序 思路 步骤 gap的取法 代码部分&#xff1a; 时间复杂度&#xff1a; 选择排序 直接选…...

网络爬虫学习:借助DeepSeek完善爬虫软件,增加停止任务功能

一、引言 我从24年11月份开始学习网络爬虫应用开发&#xff0c;经过2个来月的努力&#xff0c;终于完成了开发一款网络爬虫软件的学习目标。这几天对本次学习及应用开发进行一下回顾总结。前面已经发布了两篇日志&#xff1a; 网络爬虫学习&#xff1a;应用selenium从搜*狐搜…...

docker安装es及分词器ik

系统是macos&#xff0c;docker是docker-desktop 拉取镜像 docker pull bitnami/elasticsearch 启动docker镜像 docker create -e "discovery.typesingle-node" \ --name elasticsearch1 -p 9200:9200 -p 9300:9300 \ bitnami/elasticsearch:8.17.1 测试是否好…...

【论文阅读】On the Security of “VOSA“

On the Security of Verifiable and Oblivious Secure Aggregation for Privacy-Preserving Federated Learning -- 关于隐私保护联邦中可验证与遗忘的安全聚合的安全性 论文来源摘要Introduction回顾 VOSA 方案对VOSA不可伪造性的攻击对于类型 I 的攻击对于类型 II 的攻击 论文…...

Docker 国内最新可用镜像源20250205

2年没用dockerhub了结果今天发现镜像无法拉取了&#xff0c;找了很多镜像都无效&#xff0c;连阿里云镜像都不行了&#xff0c;最后找到下面可以用的。 Docker镜像仓库备注hub.urlsa.us.kg可用http://hub.haod.eu.org可用http://hub.chxza.eu.org可用http://ccoc.eu.org部分地…...

(2025|ICLR,音频 LLM,蒸馏/ALLD,跨模态学习,语音质量评估,MOS)音频 LLM 可作为描述性语音质量评估器

Audio Large Language Models Can Be Descriptive Speech Quality Evaluators 目录 1. 概述 2. 研究背景与动机 3. 方法 3.1 语音质量评估数据集 3.2 ALLD 对齐策略 4. 实验结果分析 4.1 MOS 评分预测&#xff08;数值评估&#xff09; 4.2 迁移能力&#xff08;在不同…...

使用 CSS 实现透明效果

在 CSS 中&#xff0c;实现透明效果有几种方法&#xff0c;具体使用哪种方法取决于具体需求。以下是一些常见的方法&#xff1a; 使用 opacity 属性&#xff1a; opacity 属性可以设置整个元素的透明度&#xff0c;包括其所有的子元素。 .transparent { opacity: 0.5; /* 0 表…...

4G核心网的演变与创新:从传统到虚拟化的跨越

4G核心网 随着移动通信技术的不断发展&#xff0c;4G核心网已经经历了从传统的硬件密集型架构到现代化、虚拟化网络架构的重大转型。这一演变不仅提升了网络的灵活性和可扩展性&#xff0c;也为未来的5G、物联网&#xff08;LOT&#xff09;和边缘计算等技术的发展奠定了基础。…...

数据库系统概论的第六版与第五版的区别,附pdf

我用夸克网盘分享了「数据库系统概论第五六版资源」&#xff0c;点击链接即可保存。 链接&#xff1a;https://pan.quark.cn/s/21a278378dee 第6版教材修订的主要内容 为了保持科学性、先进性和实用性&#xff0c;在第5版教材基础上对全书内容进行了修改、更新和充实。 在科…...

uniapp小程序自定义中间凸起样式底部tabbar

我自己写的自定义的tabbar效果图 废话少说咱们直接上代码&#xff0c;一步一步来 第一步&#xff1a; 找到根目录下的 pages.json 文件&#xff0c;在 tabBar 中把 custom 设置为 true&#xff0c;默认值是 false。list 中设置自定义的相关信息&#xff0c; pagePath&#x…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...