当前位置: 首页 > news >正文

深入理解小波变换:信号处理的强大工具

引言

在科学与工程领域,信号处理一直是关键环节,傅里叶变换与小波变换作为重要的分析工具,在其中发挥着重要作用。本文将深入探讨小波变换,阐述其原理、优势以及与傅里叶变换的对比,并通过具体案例展示其应用价值。

在这里插入图片描述

一、傅里叶变换的局限性

傅里叶变换是一种经典的信号分析方法,能将时域信号转换为频域信号,让我们清晰了解信号包含的频率成分。在分析一段音乐信号时,傅里叶变换可揭示其中的各种音调(频率)。然而,傅里叶变换存在明显不足,它假设信号是由无限延伸的正弦波或余弦波组成,在将信号从时域转换到频域的过程中,完全丢失了时间信息。这意味着,使用傅里叶变换虽能知晓信号中有哪些频率,但无法确定这些频率在何时出现。比如在分析包含多个乐器演奏的音乐信号时,我们无法得知每种乐器声音在哪个时刻响起;在分析地震信号时,无法确定不同地震波(如 P 波和 S 波)出现的具体时刻,这在很多实际应用场景中是远远不够的。

二、小波变换的原理

(一)基本概念

小波变换的核心是通过对一个母小波函数进行伸缩和平移操作,生成一系列小波基函数。假设有一个满足特定条件的母小波函数 ψ ( t ) \psi(t) ψ(t),通过尺度参数 a a a和平移参数 b b b,可得到一族小波基函数 ψ a , b ( t ) = 1 a ψ ( t − b a ) \psi_{a,b}(t)=\frac{1}{\sqrt{a}}\psi(\frac{t - b}{a}) ψa,b(t)=a 1ψ(atb)尺度参数 a a a控制着小波函数的伸缩程度,大尺度对应信号的低频特征,就像大梳子能梳理出信号中比较慢、比较低沉的部分;小尺度对应信号的高频细节,类似小梳子能捕捉到信号中比较快、比较尖锐的部分。平移参数 b b b则用于在时间轴上移动小波函数,以匹配信号不同位置的特征。

(二)信号分解与重构

对于给定的信号 f ( t ) f(t) f(t),其小波变换 W f ( a , b ) W_{f}(a,b) Wf(a,b)定义为 W f ( a , b ) = ∫ − ∞ ∞ f ( t ) ψ a , b ∗ ( t ) d t W_{f}(a,b)=\int_{-\infty}^{\infty}f(t)\psi_{a,b}^*(t)dt Wf(a,b)=f(t)ψa,b(t)dt其中 ψ a , b ∗ ( t ) \psi_{a,b}^*(t) ψa,b(t) ψ a , b ( t ) \psi_{a,b}(t) ψa,b(t)的共轭函数。这个积分运算实际上是计算信号 f ( t ) f(t) f(t)与小波基函数 ψ a , b ( t ) \psi_{a,b}(t) ψa,b(t)的内积,得到的小波系数 W f ( a , b ) W_{f}(a,b) Wf(a,b)表示了信号 f ( t ) f(t) f(t)在尺度 a a a和平移 b b b下与小波基函数的相似程度。在实际应用中,不仅可以对信号进行分解,还能通过这些小波系数进行信号重构,将分解后的信号还原。

三、小波变换的优势

(一)时频局部化特性

与傅里叶变换不同,小波变换能同时在时间域和频率域对信号进行局部化分析。在分析音乐信号时,它能准确捕捉到像鼓点、吉他拨弦等瞬间出现的声音,并在时频域中精确定位,让我们清楚知道这些声音在何时出现以及对应的频率。在地震信号分析中,可清晰展示 P 波和 S 波在不同时刻的频率特征,有助于地震学家深入研究地震的传播过程。

(二)多分辨率分析

小波变换具有多分辨率特性,可将信号分解为不同尺度下的分量,从粗到细逐步分析信号的细节。以图像分析为例,大尺度下能把握图像的整体轮廓,如一幅风景图像中的山脉、河流等大致形状;小尺度下能关注到图像的细微纹理,如树叶的脉络、岩石的纹理等。这种多分辨率分析就如同用不同倍数的放大镜观察物体,从宏观到微观全面了解信号或图像的特征。

(三)基函数的灵活性

小波变换拥有多种不同类型的母小波函数,并且可以根据信号的特点进行选择和定制。对于具有明显非平稳、非线性特征的信号,小波变换能够通过选取合适的母小波函数,更好地匹配和表示这些信号。而傅里叶变换的基函数只有固定的正弦函数和余弦函数,形式较为单一,在处理这类复杂信号时往往力不从心。

(四)计算复杂度和效率

在处理一些长度较长、复杂度较高的信号时,傅里叶变换可能需要较高的计算成本和时间。而小波变换在处理具有局部特征和稀疏性的信号时,能够利用这些特性,采用快速算法,降低计算复杂度,提高计算效率。在处理大规模图像数据或长时间的生理信号时,小波变换的这一优势尤为明显。

四、小波变换的应用案例

(一)地震信号分析

如前文所述,在地震监测中,小波变换能够准确确定不同地震波出现的时刻和频率特征。通过对地震信号进行小波变换,地震学家可以更精确地判断地震的震级、震源深度以及地震波的传播路径等重要信息。在 2011 年日本东海岸发生的 9.0 级大地震中,科学家利用小波变换对地震信号进行分析,不仅快速确定了地震的基本参数,还通过对地震信号细节的分析,深入研究了地震的破裂过程和海啸的产生机制,为后续的灾害评估和预防提供了重要依据。

(二)图像压缩

在图像领域,小波变换被广泛应用于图像压缩。将图像进行小波变换后,图像的能量会集中在少数小波系数上。通过对这些系数进行量化和编码,可以实现高效的图像压缩。著名的 JPEG 2000 图像压缩标准就采用了小波变换技术,相比传统的 JPEG 压缩标准,JPEG 2000 在相同的压缩比下能够提供更好的图像质量,特别是在处理包含丰富纹理和细节的图像时,优势更加明显。例如,在对卫星遥感图像进行压缩时,JPEG 2000 能够在大幅减少数据量的同时,保留图像中的关键信息,如地形地貌、城市建筑等细节,方便数据的传输和存储。

(三)医学信号处理

在医学领域,小波变换常用于处理各种生理信号,如心电图(ECG)、脑电图(EEG)等。以心电图信号处理为例,医生需要从心电图中准确判断心脏的工作状态,识别出正常和异常的心跳模式。小波变换能够对心电图信号进行时频分析,突出信号中的特征点,如 P 波、QRS 波群等,帮助医生更准确地检测出心脏疾病。在实际临床应用中,通过小波变换对心电图信号进行预处理和特征提取,可以辅助医生快速诊断出心肌梗死、心律失常等疾病,提高诊断的准确性和效率。

(四)小波变换计算实例

下面以一维连续信号的小波变换为例,使用哈尔小波对一个简单的分段函数信号进行变换,并详细解释变换前后的情况。

1. 定义原始信号

假设我们有一个简单的一维连续信号 f ( t ) f(t) f(t),定义在区间 [ 0 , 4 ] [0, 4] [0,4] 上:
f ( t ) = { 2 , 0 ≤ t < 2 4 , 2 ≤ t < 4 f(t) = \begin{cases} 2, & 0\leq t < 2 \\ 4, & 2\leq t < 4 \end{cases} f(t)={2,4,0t<22t<4

2. 介绍哈尔小波

哈尔小波是一种最简单的小波函数,其尺度函数 φ ( t ) \varphi(t) φ(t) 和小波函数 ψ ( t ) \psi(t) ψ(t) 定义如下:

  • 尺度函数
    φ ( t ) = { 1 , 0 ≤ t < 1 0 , 其他 \varphi(t)= \begin{cases} 1, & 0\leq t < 1 \\ 0, & \text{其他} \end{cases} φ(t)={1,0,0t<1其他
  • 小波函数
    ψ ( t ) = { 1 , 0 ≤ t < 0.5 − 1 , 0.5 ≤ t < 1 0 , 其他 \psi(t)= \begin{cases} 1, & 0\leq t < 0.5 \\ -1, & 0.5\leq t < 1 \\ 0, & \text{其他} \end{cases} ψ(t)= 1,1,0,0t<0.50.5t<1其他
3. 连续小波变换公式

连续小波变换(CWT)的公式为:
W f ( a , b ) = 1 a ∫ − ∞ ∞ f ( t ) ψ ( t − b a ) d t W_f(a, b)=\frac{1}{\sqrt{a}}\int_{-\infty}^{\infty}f(t)\psi\left(\frac{t - b}{a}\right)dt Wf(a,b)=a 1f(t)ψ(atb)dt
其中, a a a 是尺度参数,控制小波的伸缩; b b b 是平移参数,控制小波的平移。

4. 具体计算示例

我们取几个特定的 ( a , b ) (a, b) (a,b) 值来计算小波变换结果。

情况一: a = 1 , b = 0 a = 1, b = 0 a=1,b=0

W f ( 1 , 0 ) = ∫ − ∞ ∞ f ( t ) ψ ( t ) d t = ∫ 0 1 f ( t ) ψ ( t ) d t W_f(1, 0)=\int_{-\infty}^{\infty}f(t)\psi(t)dt=\int_{0}^{1}f(t)\psi(t)dt Wf(1,0)=f(t)ψ(t)dt=01f(t)ψ(t)dt
因为在区间 [ 0 , 1 ] [0, 1] [0,1] 上, f ( t ) = 2 f(t) = 2 f(t)=2,所以:
W f ( 1 , 0 ) = ∫ 0 0.5 2 × 1 d t + ∫ 0.5 1 2 × ( − 1 ) d t = 2 × ( 0.5 − 0 ) − 2 × ( 1 − 0.5 ) = 1 − 1 = 0 W_f(1, 0)=\int_{0}^{0.5}2\times1dt+\int_{0.5}^{1}2\times(- 1)dt=2\times(0.5 - 0)-2\times(1 - 0.5)=1 - 1 = 0 Wf(1,0)=00.52×1dt+0.512×(1)dt=2×(0.50)2×(10.5)=11=0

情况二: a = 1 , b = 2 a = 1, b = 2 a=1,b=2

W f ( 1 , 2 ) = ∫ − ∞ ∞ f ( t ) ψ ( t − 2 ) d t = ∫ 2 3 f ( t ) ψ ( t − 2 ) d t W_f(1, 2)=\int_{-\infty}^{\infty}f(t)\psi(t - 2)dt=\int_{2}^{3}f(t)\psi(t - 2)dt Wf(1,2)=f(t)ψ(t2)dt=23f(t)ψ(t2)dt
因为在区间 [ 2 , 3 ] [2, 3] [2,3] 上, f ( t ) = 4 f(t) = 4 f(t)=4,所以:
W f ( 1 , 2 ) = ∫ 2 2.5 4 × 1 d t + ∫ 2.5 3 4 × ( − 1 ) d t = 4 × ( 2.5 − 2 ) − 4 × ( 3 − 2.5 ) = 2 − 2 = 0 W_f(1, 2)=\int_{2}^{2.5}4\times1dt+\int_{2.5}^{3}4\times(-1)dt=4\times(2.5 - 2)-4\times(3 - 2.5)=2 - 2 = 0 Wf(1,2)=22.54×1dt+2.534×(1)dt=4×(2.52)4×(32.5)=22=0

情况三: a = 2 , b = 0 a = 2, b = 0 a=2,b=0

此时 ψ ( t 2 ) \psi\left(\frac{t}{2}\right) ψ(2t) 为:
ψ ( t 2 ) = { 1 , 0 ≤ t < 1 − 1 , 1 ≤ t < 2 0 , 其他 \psi\left(\frac{t}{2}\right)= \begin{cases} 1, & 0\leq t < 1 \\ -1, & 1\leq t < 2 \\ 0, & \text{其他} \end{cases} ψ(2t)= 1,1,0,0t<11t<2其他

W f ( 2 , 0 ) = 1 2 ∫ − ∞ ∞ f ( t ) ψ ( t 2 ) d t = 1 2 ( ∫ 0 1 2 × 1 d t + ∫ 1 2 2 × ( − 1 ) d t ) = 0 W_f(2, 0)=\frac{1}{\sqrt{2}}\int_{-\infty}^{\infty}f(t)\psi\left(\frac{t}{2}\right)dt=\frac{1}{\sqrt{2}}\left(\int_{0}^{1}2\times1dt+\int_{1}^{2}2\times(-1)dt\right)=0 Wf(2,0)=2 1f(t)ψ(2t)dt=2 1(012×1dt+122×(1)dt)=0

情况四: a = 2 , b = 2 a = 2, b = 2 a=2,b=2

此时 ψ ( t − 2 2 ) \psi\left(\frac{t - 2}{2}\right) ψ(2t2) 为:
ψ ( t − 2 2 ) = { 1 , 2 ≤ t < 3 − 1 , 3 ≤ t < 4 0 , 其他 \psi\left(\frac{t - 2}{2}\right)= \begin{cases} 1, & 2\leq t < 3 \\ -1, & 3\leq t < 4 \\ 0, & \text{其他} \end{cases} ψ(2t2)= 1,1,0,2t<33t<4其他

W f ( 2 , 2 ) = 1 2 ∫ − ∞ ∞ f ( t ) ψ ( t − 2 2 ) d t = 1 2 ( ∫ 2 3 4 × 1 d t + ∫ 3 4 4 × ( − 1 ) d t ) = 0 W_f(2, 2)=\frac{1}{\sqrt{2}}\int_{-\infty}^{\infty}f(t)\psi\left(\frac{t - 2}{2}\right)dt=\frac{1}{\sqrt{2}}\left(\int_{2}^{3}4\times1dt+\int_{3}^{4}4\times(-1)dt\right)=0 Wf(2,2)=2 1f(t)ψ(2t2)dt=2 1(234×1dt+344×(1)dt)=0

5. 变换前后的解释

变换前(原始信号)

原始信号 f ( t ) f(t) f(t) 是一个分段常数函数,在区间 [ 0 , 2 ) [0, 2) [0,2) 上值为 2,在区间 [ 2 , 4 ) [2, 4) [2,4) 上值为 4。它描述了一个在不同时间段具有不同恒定值的现象。从时域角度看,我们可以直接观察到信号在不同区间的取值情况,但对于信号在不同尺度和位置上的变化特征并不容易直观分析。

变换后(小波变换结果)
  • 尺度参数 a a a 的意义:尺度参数 a a a 控制着小波函数的伸缩程度。较大的 a a a 值对应着较宽的小波,它可以检测信号中的低频成分,也就是信号的整体趋势;较小的 a a a 值对应着较窄的小波,它可以检测信号中的高频成分,也就是信号的局部变化。
  • 平移参数 b b b 的意义:平移参数 b b b 控制着小波函数在时间轴上的位置。通过改变 b b b,我们可以在不同的时间位置对信号进行分析。
  • 小波变换结果分析:在上述计算中,我们得到的小波变换结果大部分为 0。这是因为哈尔小波是一种非常简单的小波,对于这种分段常数信号,在特定的 ( a , b ) (a, b) (a,b) 组合下,信号与小波函数的乘积在积分区域内正负抵消。但如果信号存在突变或者局部变化,小波变换会在相应的 ( a , b ) (a, b) (a,b) 位置产生非零值,从而可以检测到信号的局部特征。

通过小波变换,我们将原始信号从时域转换到了尺度 - 平移域,能够更方便地分析信号在不同尺度和位置上的特征,这对于信号处理、图像分析、故障诊断等领域都具有重要意义。

五、总结

小波变换作为一种强大的信号处理工具,以其独特的时频局部化特性、多分辨率分析能力、灵活的基函数选择以及高效的计算性能,在众多领域展现出了巨大的优势。与傅里叶变换相比,小波变换能够更好地处理非平稳、非线性信号,为我们提供更丰富、更准确的信息。无论是在地震监测、图像压缩还是医学信号处理等领域,小波变换都发挥着不可或缺的作用,并且随着技术的不断发展,其应用前景将更加广阔。

相关文章:

深入理解小波变换:信号处理的强大工具

引言 在科学与工程领域&#xff0c;信号处理一直是关键环节&#xff0c;傅里叶变换与小波变换作为重要的分析工具&#xff0c;在其中发挥着重要作用。本文将深入探讨小波变换&#xff0c;阐述其原理、优势以及与傅里叶变换的对比&#xff0c;并通过具体案例展示其应用价值。 一…...

人机交互系统实验三 多通道用户界面

实验目的和要求 1)了解常见的多通道用户界面 2)查找资料&#xff0c;熟悉一种多通道用户界面并写出综述 实验环境 Windows10 实验内容与过程 (一) 实验内容: 要求上网查找资料&#xff0c;熟悉一种多通道用户界面并写出综述&#xff0c;可以是眼动跟踪、手势识别、 三维…...

Filter -> MaskFilter遮罩滤镜详解

MaskFilter 作用对象&#xff1a;MaskFilter 主要用于Paint的外观效果&#xff0c;给用Paint绘制的内容添加模糊或者浮雕效果应用效果&#xff1a; MaskFilter 处理位图的遮罩效果&#xff0c;影响绘制的边缘或整体形状主要用于模糊处理、浮雕效果等&#xff0c;通过影响绘制对…...

RK3568使用QT操作LED灯

文章目录 一、QT中操作硬件设备思路Linux 中的设备文件操作硬件设备的思路1. 打开设备文件2. 写入数据到设备3. 从设备读取数据4. 设备控制5. 异常处理在 Qt 中操作设备的典型步骤实际应用中的例子:控制 LED总结二、QT实战操作LED灯设备1. `mainwindow.h` 头文件2. `mainwindo…...

python学opencv|读取图像(五十七)使用cv2.bilateralFilter()函数实现图像像素双边滤波处理

【1】引言 前序学习过程中&#xff0c;已经掌握了对图像的基本滤波操作技巧&#xff0c;具体的图像滤波方式包括均值滤波、中值滤波和高斯滤波&#xff0c;相关文章链接有&#xff1a; python学opencv|读取图像&#xff08;五十四&#xff09;使用cv2.blur()函数实现图像像素…...

为何实现大语言模型的高效推理以及充分释放 AI 芯片的计算能力对于企业级落地应用来说,被认为具备显著的研究价值与重要意义?

&#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ AI 芯片&#xff1a;为人工智能而生的 “大脑” AI 芯片&#xff0c;又称人工智能加速器或计算卡&#xff0c;是专为加速人工智能应用&#xff0c;特别是深度学习任务设计的专用集成电路&#xff08;A…...

Android 约束布局ConstraintLayout整体链式打包居中显示

Android 用约束布局ConstraintLayout实现将多个控件视作一个整体居中显示&#xff0c;使用 app:layout_constraintHorizontal_chainStyle"packed"实现 chain 除了链条方向有横向和竖向区分外&#xff0c; chain链条上的模式有 3种 spread - 元素将被展开&#…...

在C#中,Array,List,ArrayList,Dictionary,Hashtable,SortList,Stack的区别

Array Array你可以理解为是所有数组的大哥 普通数组 : 特点是长度固定, 只能存储相同类型的数据 static void Main(string[] args){//声明int[] ints;string[] strings;People[] peoples;//默认值 //int 类型是 0//string 类型是 nullint[] ints1 { 1, 2, 3 };string[] …...

微服务知识——微服务架构的演进过程

文章目录 初始架构&#xff1a;单机架构第一次演进&#xff1a;Tomcat与数据库分开部署第二次演进&#xff1a;引入本地缓存和分布式缓存第三次演进&#xff1a;引入反向代理实现负载均衡第四次演进&#xff1a;数据库读写分离第五次演进&#xff1a;数据库按业务分库第六次演进…...

Chrome 浏览器:互联网时代的浏览利器

Chrome 浏览器&#xff1a;互联网时代的浏览利器 引言 在互联网时代&#xff0c;浏览器已经成为我们日常生活中不可或缺的工具。作为全球最受欢迎的浏览器之一&#xff0c;Chrome 浏览器凭借其出色的性能、丰富的扩展程序和简洁的界面&#xff0c;赢得了广大用户的喜爱。本文…...

深入浅出 NRM:加速你的 npm 包管理之旅

文章目录 前言一、NRM 是什么&#xff1f;二、为什么需要 NRM&#xff1f;三、NRM 的优势四、NRM 的安装与使用4.1 安装 NRM4.2 查看可用的 npm 源4.3 切换 npm 源4.4 测试 npm 源速度4.5 添加自定义 npm 源4.6 删除 npm 源 五、NRM 的进阶使用六、总结 前言 作为一名 JavaScr…...

Linux——基础命令1

$&#xff1a;普通用户 #&#xff1a;超级用户 cd 切换目录 cd 目录 &#xff08;进入目录&#xff09; cd ../ &#xff08;返回上一级目录&#xff09; cd ~ &#xff08;切换到当前用户的家目录&#xff09; cd - &#xff08;返回上次目录&#xff09; pwd 输出当前目录…...

nuxt3中使用useFetch请求刷新不返回数据或返回html结构问题解决-完整nuxt3useFetchtch请求封装

前言 如果使用nuxt3写项目&#xff0c;可以查看nuxt3实战&#xff1a;完整的 nuxt3 vue3 项目创建与useFetch请求封装&#xff0c;此篇内容有详细步骤 但在此篇内容中useFetch请求在页面有多个请求的情况下&#xff0c;或者放在客户端渲染情境下是失败的&#xff0c;所以在此篇…...

Kubernetes 中 BGP 与二层网络的较量:究竟孰轻孰重?

如果你曾搭建过Kubernetes集群,就会知道网络配置是一个很容易让人深陷其中的领域。在负载均衡器、服务通告和IP管理之间,你要同时应对许多变动的因素。对于许多配置而言,使用二层(L2)网络就完全能满足需求。但边界网关协议(BGP)—— 支撑互联网运行的技术 —— 也逐渐出…...

C中静态库和动态库的使用

2.使用尖括号包括 如果要使用尖括号包括头文件,有两种方法 1.将头文件移动到标准头文件目录,linux为/usr/local/include.windows下为C:\MinGW\include 2.编译时指定头文件目录,gcc -I/头文件目录 … 编译时-I参数就是用于指定头文件目录 3.静态库 将文件编译为静态库,可以…...

Debian 安装 Nextcloud 使用 MariaDB 数据库 + Caddy + PHP-FPM

前言 之前通过 docker在ubuntu上安装Nextcloud&#xff0c;但是现在我使用PVE安装Debian虚拟机&#xff0c;不想通过docker安装了。下面开始折腾。 安装过程 步骤 1&#xff1a;更新系统并安装必要的软件 sudo apt update && sudo apt upgrade -y sudo apt install…...

【FPGA】 MIPS 12条整数指令 【3】

实现乘除 修改框架 EX&#xff1a;实现带符号乘除法和无符号乘除法 HiLo寄存器&#xff1a;用于存放乘法和除法的运算结果。Hi、Lo为32bit寄存器。电路描述与实现RegFile思想一致 仿真 代码 DataMem.v include "define.v"; module DataMem(input wire clk,input…...

Mac 部署Ollama + OpenWebUI完全指南

文章目录 &#x1f4bb; 环境说明&#x1f6e0;️ Ollama安装配置1. 安装[Ollama](https://github.com/ollama/ollama)2. 启动Ollama3. 模型存储位置4. 配置 Ollama &#x1f310; OpenWebUI部署1. 安装Docker2. 部署[OpenWebUI](https://www.openwebui.com/)&#xff08;可视化…...

蓝桥杯小白打卡第二天

789. 数的范围 题目描述 给定一个按照升序排列的长度为 n n n 的整数数组&#xff0c;以及 q q q 个查询。 对于每个查询&#xff0c;返回一个元素 k k k 的起始位置和终止位置&#xff08;位置从 0 0 0 开始计数&#xff09;。 如果数组中不存在该元素&#xff0c;则返…...

Docker Compose:容器编排的利器

Docker Compose:容器编排的利器 引言 随着容器技术的普及,Docker成为了当今最受欢迎的容器编排工具之一。Docker Compose作为Docker生态系统中的一部分,允许用户以声明式的方式定义和运行多容器Docker应用。本文将深入探讨Docker Compose的基本概念、工作原理、使用场景以…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型&#xff08;Primitive&#xff09; 和 对象类型&#xff08;Object&#xff09; 两大类&#xff0c;共 8 种&#xff08;ES11&#xff09;&#xff1a; 一、原始类型&#xff08;7种&#xff09; 1. undefined 定…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...