当前位置: 首页 > news >正文

2024~2025学年佛山市普通高中教学质量检测(一)【高三数学】

一、选择题

本题共8小题,每小题5分,共40分。在每小题给出的四个选项中。只有一项是符合题目要求的。

  • 1、若 5 z + 2 i = 1 \frac{5}{z}+2i=1 z5+2i=1,则 z = z= z=
    A. 1-2i
    B. 1+2i
    C. 2-i
    D. 2+i
  • 2、已知集合 A = { x ∣ 1 < x < a } A=\left\{ x|1 \lt x \lt a \right\} A={x∣1<x<a} B = { − 2 , 0 , 1 , 2 } B=\left\{-2,0,1,2\right\} B={2,0,1,2},若 A ∩ B = ϕ A \cap B = \phi AB=ϕ,则实数 a a a 的取值范围是
    A. a < 1 a\lt1 a<1
    B. a < 2 a\lt2 a<2
    C. a ≤ 1 a\leq1 a1
    D. a ≤ 2 a\leq2 a2
  • 3、等比数列 { a n } \left\{a_n\right\} {an} 中, a 2 = 1 a_2=1 a2=1,设甲: a 4 = 3 a_4=3 a4=3,乙: a 6 = 9 a_6=9 a6=9,则甲是乙的
    A. 充分不必要条件
    B. 必要不充分条件
    C. 充要条件
    D. 既不充分也不必要
  • 4、函数 f ( x ) = sin ⁡ x + sin ⁡ 2 x f(x)=\sin{x}+\sin{2x} f(x)=sinx+sin2x 在区间 ( 0 , 3 π ) (0,3\pi) (0,3π) 上的零点个数
    A. 4
    B. 5
    C. 6
    D. 7
  • 5、随着中国经济高速增长,人民生活水平不断提高,旅游成了越来越多家庭的重要生活方式,某景区人数大约每年以11%的增长率呈指数增长,那么至少经过多少年后,该景区的旅游人数翻一倍?(参考数据: lg ⁡ 2 ≈ 0.301 \lg2 \approx 0.301 lg20.301 lg ⁡ 111 ≈ 2.405 \lg 111 \approx 2.405 lg1112.405
    A. 6
    B. 7
    C. 8
    D. 9
  • 6、在直角坐标系 x O y xOy xOy 中,满足不等式 { x 2 + y 2 − 2 x < 1 x 2 + y 2 + 2 x ≤ 1 \begin{cases}x^{2}+y^{2}-2x \lt 1\\x^{2}+y^{2}+2x \leq 1\end{cases} {x2+y22x<1x2+y2+2x1 的点 ( x , y ) (x,y) (x,y) 表示的区域面积为
    A. π 2 − 1 \frac{\pi}{2}-1 2π1
    B. π \pi π
    C. π − 1 \pi-1 π1
    D. π − 2 \pi-2 π2
  • 7、若直线 y = x + a y=x+a y=x+a 与曲线 y = ln ⁡ ( x + b ) y=\ln(x+b) y=ln(x+b) 相切,则 a 2 + b 2 a^{2}+b^{2} a2+b2 的最小值
    A. 1 2 \frac{1}{2} 21
    B. 1
    C. 3 2 \frac{3}{2} 23
    D. 2
  • 8、已知直线 m 与平面 α \alpha α 所成的角为 π 4 \frac{\pi}{4} 4π,若直线 n ⊂ α n\subset\alpha nα,直线 m ⊂ β m\subset\beta mβ,设m与n的夹角为 θ 1 \theta_1 θ1 α \alpha α β \beta β 的夹角为 θ 2 \theta_2 θ2,则
    A. θ 1 ≥ π 4 , θ 2 ≥ π 4 \theta_1\geq\frac{\pi}{4},\theta_2\geq\frac{\pi}{4} θ14π,θ24π
    B. θ 1 ≥ π 4 , θ 2 ≤ π 4 \theta_1\geq\frac{\pi}{4},\theta_2\leq\frac{\pi}{4} θ14π,θ24π
    C. θ 1 ≤ π 4 , θ 2 ≥ π 4 \theta_1\leq\frac{\pi}{4},\theta_2\geq\frac{\pi}{4} θ14π,θ24π
    D. θ 1 ≤ π 4 , θ 2 ≤ π 4 \theta_1\leq\frac{\pi}{4},\theta_2\leq\frac{\pi}{4} θ14π,θ24π

二、选择题

本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对的得6分。部分选对的得部分分,有选错的得零分。

  • 9、有一组成对样本数据 ( x 1 , y 1 ) , ( x 2 , y 2 ) ⋯ ( x n , y n ) (x_1,y_1),(x_2,y_2)\cdots(x_n,y_n) (x1,y1),(x2,y2)(xn,yn),设 x ˉ = 1 n ∑ i = 1 n x n \bar{x}=\frac{1}{n}\displaystyle\sum_{i=1}^n x_n xˉ=n1i=1nxn y ˉ = 1 n ∑ i = 1 n y i \bar{y}=\frac{1}{n}\displaystyle\sum_{i=1}^ny_i yˉ=n1i=1nyi,由这组数据得到新成对样本数据 ( x 1 − x ˉ , y 1 − y ˉ ) , ( x 2 − x ˉ , y 2 − y ˉ ) ⋯ ( x n − x ˉ , y n − y ˉ ) (x_1-\bar{x},y_1-\bar{y}),(x_2-\bar{x},y_2-\bar{y})\cdots(x_n-\bar{x},y_n-\bar{y}) (x1xˉ,y1yˉ),(x2xˉ,y2yˉ)(xnxˉ,ynyˉ),下面就这两组数据分别先计算样本相关系数,再根据最小二乘法计算回归直线,最后计算出残差平方,则
    (注:回归直线的斜率和截距的最小二乘法估计公式分别为 b ^ = ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) ∑ i = 1 n ( x i − x ˉ ) 2 \hat{b}=\frac{\displaystyle\sum_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\displaystyle\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}} b^=i=1n(xixˉ)2i=1n(xixˉ)(yiyˉ) a = y ˉ − b ^ x ˉ a=\bar{y}-\hat{b}\bar{x} a=yˉb^xˉ.)
    A. 两组数据的相关系数相同
    B. 两组数据的残差平方和相同
    C. 两条经验回归直线的斜率相同
    D. 两条经验回归直线的截距相同
  • 10、在 △ A B C \triangle{ABC} ABC中, ∠ C = 4 5 ∘ \angle C=45^{\circ} C=45 ( A B → + 3 A C → ) ⋅ B C → = 0 (\overrightarrow{AB}+3\overrightarrow{AC})\cdot{\overrightarrow{BC}=0} (AB +3AC )BC =0,则下列说法正确的是
    A. sin ⁡ B = 10 10 \sin{B}=\frac{\sqrt{10}}{10} sinB=1010
    B. tan ⁡ A = 2 \tan{A}=2 tanA=2
    C. B A → \overrightarrow{BA} BA B C → \overrightarrow{BC} BC 方向上的投影向量为 3 4 B C → \frac{3}{4}\overrightarrow{BC} 43BC
    D. 若 ∣ A C → ∣ = 2 \left|\overrightarrow{AC}\right|=\sqrt{2} AC =2 ,则 A B → ⋅ A C → = 2 \overrightarrow{AB}\cdot\overrightarrow{AC}=2 AB AC =2
  • 11、已知定义域为R的函数 f ( x ) f(x) f(x)满足 f ( x − y ) − f ( x + y ) = f ( x − 1 ) f ( y − 1 ) f(x-y)-f(x+y)=f(x-1)f(y-1) f(xy)f(x+y)=f(x1)f(y1),且 f ( 0 ) = 2 , g ( x ) f(0)=2, g(x) f(0)=2,g(x) f ( x ) 的导函数 f(x)的导函数 f(x)的导函数,则
    A. f ( x ) f(x) f(x)为偶函数
    B. g ( x ) g(x) g(x)为周期函数
    C. ∑ i = 0 2025 f ( k ) = 0 \displaystyle\sum_{i=0}^{2025}f(k)=0 i=02025f(k)=0
    D. g ( 2026 ) = 0 g(2026)=0 g(2026)=0

三、填空题

  • 12、 ( 1 + x ) 5 + ( 1 − x ) 5 (1+\sqrt{x})^{5}+({1-\sqrt{x}})^{5} (1+x )5+(1x )5 的展开式中 x 2 x^{2} x2 的系数是____
  • 13、记 △ A B C \triangle{ABC} ABC 的内角 A 、 B 、 C A、B、C ABC 的对边分别为 a 、 b 、 c a、b、c abc 1 tan ⁡ A + 2 tan ⁡ B = 3 tan ⁡ C \frac{1}{\tan{A}}+\frac{2}{\tan{B}}=\frac{3}{\tan{C}} tanA1+tanB2=tanC3,则 c 2 a 2 + 2 b 2 = \frac{c^{2}}{a^{2}+2b^{2}}= a2+2b2c2=____
  • 14、直线 l l l 过双曲线C: x 2 a 2 − y 2 b 2 = 1 \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 a2x2b2y2=1 ( a > 0 , b > 0 ) (a\gt0,b\gt0) (a>0,b>0)的左焦点F,交C的渐近线于A、B两点,若 F B → = 3 F A → \overrightarrow{FB}=3\overrightarrow{FA} FB =3FA ,且 ∣ F A → ∣ = b \left|\overrightarrow{FA}\right|=b FA =b,则C的离心率为____

四、解答题

  • 15、如图,直三棱柱 A B C − A 1 B 1 C 1 ABC-A_{1}B_{1}C_{1} ABCA1B1C1 的体积为 1 2 \frac{1}{2} 21,侧面 B B 1 C 1 C BB_1C_1C BB1C1C 是边长为1的正方形, A B = 1 AB=1 AB=1,点D、E分别在线段 C B 1 CB_1 CB1 A 1 C 1 A_1C_1 A1C1 上.
    (1) 若D、E分别是 C B 1 , A 1 C 1 CB_{1},A_{1}C_{1} CB1,A1C1 的中点,求证: D E ∥ 平面 A B B 1 A DE\parallel平面ABB_{1}A DE平面ABB1A
    (2) 若 D E ⊥ C B DE \perp CB DECB D E ⊥ A C DE \perp AC DEAC,求 D E DE DE.15

  • 16、ACE球是指在网球对局中,一方发球,球落在有效区内,但接球方却没有触及到球而使发球方直接得分的发球,甲、乙两人进行发球训练,规则如下:每次由其中一人发球,若发出ACE球,则换人发球,若未发出ACE球,则两人等可能地获得下一次发球权。设甲、乙发出ACE球的概率均为 p 0 p_0 p0,记 A n = A_n= An=“第n次发出发球的人是甲”。
    (1) 证明: P ( A n + 1 ∣ A n ) + P ( A n + 1 ∣ A n ˉ ) = 1 P(A_{n+1}|A_{n})+P(A_{n+1}|\bar{A_{n}})=1 P(An+1An)+P(An+1Anˉ)=1
    (2) 若 P ( A 1 ) = 1 P(A_{1})=1 P(A1)=1 P ( A 2 = 9 20 P(A_{2}=\frac{9}{20} P(A2=209,求 p 0 p_0 p0 P ( A n ) P(A_{n}) P(An).

  • 17、已知函数 f ( x ) = ( x + K ) e x f(x)=(x+K)e^{x} f(x)=(x+K)ex,其中 K ∈ R K \in R KR.
    (1) 当 k = − 1 k=-1 k=1 时,讨论关于x的方程 f ( x ) = a ( a ∈ R ) f(x)=a(a \in R) f(x)=a(aR) 的实根个数;
    (2) 当 k > − 1 k\gt-1 k>1 时,证明:对任意的实数 x 1 , x 2 ( x 1 ≠ x 2 ) x_1,x_2(x_1 \ne x_2) x1,x2(x1=x2),都有 f ( x 1 ) − f ( x 2 ) e x 1 − e x 2 > x 1 + x 2 2 \frac{f(x_1)-f(x_2)}{e^{x_1}-e^{x_2}}\gt\frac{x_1+x_2}{2} ex1ex2f(x1)f(x2)>2x1+x2.

  • 18、已知 △ D E F \triangle DEF DEF 的顶点 E E E x x x 轴上, F ( 1 4 , 0 ) F(\frac{1}{4},0) F(41,0) ∣ D F → ∣ = ∣ E F → ∣ \left|\overrightarrow{DF}\right|=\left|\overrightarrow{EF}\right| DF = EF ,且边 D E DE DE 的中点 M M M y y y 轴上,设 D D D 的轨迹为曲线 Γ \Gamma Γ.
    (1) 求 Γ \Gamma Γ 的方程;
    (2) 若正 △ A B C \triangle ABC ABC 的三个顶点都在 Γ \Gamma Γ 上,且直线 A B AB AB 的倾斜角为 4 5 ∘ 45^{\circ} 45,求 ∣ A B ∣ \left|AB\right| AB.

  • 19、 将 2 N 2N 2N 项数列 { a 1 , a 2 , ⋯ , a N , b 1 , b 2 , ⋯ , b N } \left\{a_{1},a_{2},\cdots,a_{N},b_{1},b_{2},\cdots,b_{N}\right\} {a1,a2,,aN,b1,b2,,bN} 重新排序为 { b 1 , a 1 , a 2 , b 2 , ⋯ , b N , a N } \left\{b_{1},a_{1},a_{2},b_{2},\cdots,b_{N},a_{N}\right\} {b1,a1,a2,b2,,bN,aN} 的操作称为一次“洗牌”,即排序后的新数列以 b 1 b_{1} b1 为首项,将 a i a_{i} ai 排在 b i b_{i} bi 之后,将 b i + 1 b_{i+1} bi+1 排在 a i a_{i} ai 之后,对于数列 1 , 2 , ⋯ , 2 N {1,2,\cdots,2N} 1,2,,2N,将“洗牌”后得到的新数列中数字K的位置定义为 f ( k ) f(k) f(k)。例如,当 N = 3 N=3 N=3 时,数列 1 , 2 , 3 , 4 , 5 , 6 {1,2,3,4,5,6} 1,2,3,4,5,6 经过一次“洗牌”后变为 4 , 1 , 5 , 2 , 6 , 3 {4,1,5,2,6,3} 4,1,5,2,6,3,此时 f ( 1 ) = 2 , f ( 2 ) = 4 , f ( 3 ) = 6 , f ( 4 ) = 1 , f ( 5 ) , f ( 6 ) = 5 f(1)=2,f(2)=4,f(3)=6,f(4)=1,f(5),f(6)=5 f(1)=2,f(2)=4,f(3)=6,f(4)=1,f(5),f(6)=5.
    (1) 写出数列 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 {1,2,3,4,5,6,7,8} 1,2,3,4,5,6,7,8 经过3次“洗牌”后得到的“新数列”;
    (2) 对于满足 1 ≤ K ≤ 2 N 1\leq K \leq 2N 1K2N 的任意整数 k k k,求经过一次“洗牌”后 f ( k ) f(k) f(k) 的解析式;
    (3) 当 N = 2 n − 1 N=2^{n-1} N=2n1(其中 n ∈ N + n \in N^{+} nN+)时,数列 ( 1 , 2 , ⋯ , 2 N ) (1,2,\cdots,2N) (1,2,,2N) 经过若干次“洗牌”后能否还原为 ( 1 , 2 , ⋯ , 2 N ) (1,2,\cdots,2N) (1,2,,2N) ?如果能,请说明至少需要多少次“洗牌”;如果不能,请说明理由。


更新时间记录

  • 选择题单选8道录完;「2025.2.7 16:18」
  • 选择题多选3道录完;「2025.2.7 18:30」
  • 填空题3道录完;「2025.2.7 18:45」
  • 解答题4道录完;「2025.2.7 21:42」
  • 敲录完毕后看了一遍,发布。「2025.2.7 21:56」

相关文章:

2024~2025学年佛山市普通高中教学质量检测(一)【高三数学】

一、选择题 本题共8小题&#xff0c;每小题5分&#xff0c;共40分。在每小题给出的四个选项中。只有一项是符合题目要求的。 1、若 5 z 2 i 1 \frac{5}{z}2i1 z5​2i1&#xff0c;则 z z z A. 1-2i B. 12i C. 2-i D. 2i2、已知集合 A { x ∣ 1 < x < a } A\left\{…...

管理etcd的存储空间配额

如何管理etcd的存储空间配额 - 防止集群存储耗尽指南 本文基于etcd v3.4官方文档编写 为什么需要空间配额&#xff1f; 在分布式系统中&#xff0c;etcd作为可靠的键值存储&#xff0c;很容易成为系统瓶颈。当遇到以下情况时&#xff1a; 应用程序频繁写入大量数据未及时清理…...

备战蓝桥杯-洛谷

今天打算写一些洛谷上面的题目 P10904 [蓝桥杯 2024 省 C] 挖矿 https://www.luogu.com.cn/problem/P10904 看了大佬写的题解才写出来这道题的&#xff1a;题解&#xff1a;P10904 [蓝桥杯 2024 省 C] 挖矿 - 洛谷专栏 思路&#xff1a; 这是一道贪心的题目&#xff0c;用…...

在线免费 HTML 预览导出为图片,并且支持水平切割

在线体验 作用&#xff1a;可以直接预览 html 的页面效果&#xff0c;导出为图片&#xff0c;支持指定切割的数量&#xff0c;等高水平切割。 https://houbb.github.io/tools/html-preview.html 创作背景 有时候希望给一段 html 导出为长度&#xff0c;或者水平切分&#xff…...

洛谷题目: P2996 [USACO10NOV] Visiting Cows G 题解

题目传送门&#xff1a; P2996 [USACO10NOV] Visiting Cows G - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 前言&#xff1a; 本题的核心问题是在一棵由奶牛&#xff08;节点&#xff09;和道路&#xff08;边&#xff09;构成的树状结构中&#xff0c;根据 “不能同时拜…...

告别手动操作!用Ansible user模块高效管理 Linux账户

在企业运维环境中&#xff0c;服务器的用户管理是一项基础但非常重要的任务。比如&#xff0c;当有新员工加入时&#xff0c;我们需要在多台服务器上为他们创建账户并分配合适的权限。而当员工离职或岗位发生变化时&#xff0c;我们也需要迅速禁用或删除他们的账户&#xff0c;…...

java 8 在 idea 无法创建 java spring boot 项目的 变通解决办法

java 8 在 idea 无法创建 java spring boot 项目的 变通解决办法 spring boot 3 官方强制 要用 java 17 &#xff0c;但是 不想安装java 17的 &#xff0c;但是又想 使用 spring boot &#xff0c;可以这样 &#xff1a; 在这个网站 https://start.aliyun.com/ 选择 你相对…...

javaEE初阶————多线程初阶(3)

大家新年快乐呀&#xff0c;今天是第三期啦&#xff0c;大家前几期的内容掌握的怎么样啦&#xff1f; 1&#xff0c;线程死锁 1.1 构成死锁的场景 a&#xff09;一个线程一把锁 这个在java中是不会发生的&#xff0c;因为我们之前讲的可重入机制&#xff0c;在其他语言中可…...

eggnog后kegg结果提取和注释

首先进入KEGG BRITE: KEGG Orthology (KO) 下载json文件 用python处理一下 import json import re import osos.chdir("C:/Users/fordata/Downloads/") with open("ko00001.json","r") as f:fj f.read()kojson json.loads(fj)with open(&qu…...

shell脚本控制——处理信号

Linux利用信号与系统中的进程进行通信。你可以通过对脚本进行编程&#xff0c;使其在收到特定信号时执行某些命令&#xff0c;从而控制shell脚本的操作。 1.重温Linux信号 Linux系统和应用程序可以产生超过30个信号。下表列出了在shell脚本编程时会遇到的最常见的Linux系统信…...

Doris更新某一列数据完整教程

在Doris,要更新数据,并不像mysql等关系型数据库那样方便,可以用update set来直接更新某个列。在Doris只能进行有限的更新,官方文档如下: UPDATE - Apache Doris 1、使用Doris自带的Update功能 描述​ 该语句是为进行对数据进行更新的操作,UPDATE 语句目前仅支持 UNIQUE…...

VIVADO生成DCP和EDF指南

VIVADO生成DCP和EDF 文章目录 VIVADO生成DCP和EDF前言一、DCP封装二、EDF封装 前言 详细步骤就不贴图了&#xff0c;网上一大堆 在Vivado中&#xff0c;常用的三种封装形式有三种&#xff1a; ● IP ● edif ● dcp 在下文之前&#xff0c;先看几个概念 out_of_context&…...

Python中字节顺序、大小与对齐方式:深入理解计算机内存的底层奥秘

在计算机科学的世界里&#xff0c;理解数据的存储方式是每个程序员必备的技能。无论是处理网络通信、文件读写&#xff0c;还是进行底层系统编程&#xff0c;字节顺序&#xff08;Endianness&#xff09;、数据大小&#xff08;Size&#xff09;和对齐方式&#xff08;Alignmen…...

在亚马逊云科技上云原生部署DeepSeek-R1模型(上)

DeepSeek-R1在开源版本发布的第二天就登陆了亚马逊云科技AWS云平台&#xff0c;这个速度另小李哥十分震惊。这又让我想起了在亚马逊云科技全球云计算大会re:Invent2025里&#xff0c;亚马逊CEO Andy Jassy说过的&#xff1a;随着目前生成式AI应用规模的扩大&#xff0c;云计算的…...

Redis实现分布式锁详解

前言 用 Redis 实现分布式锁&#xff0c;是我们常见的实现分布式锁的一种方式 下面是 redis 实现 分布式锁的四种方式&#xff0c;每种方式都有一定的问题&#xff0c;直到最后的 zookeeper 先透露一下&#xff1a; Redission 解决了 set ex nx 无法自动续期的问题 RedLo…...

表单标签(使用场景注册页面)

表单域&#xff08;了解即可&#xff0c;还要到学习服务器阶段才可以真正送到后台&#xff09; 定义了一个区域了之后&#xff0c;可以把这部分区域发送到后台上 <form action“url地址” method“提交方式” name"表单域名称">各种表单元素控件 </form>…...

c++ template-3

第 7 章 按值传递还是按引用传递 从一开始&#xff0c;C就提供了按值传递&#xff08;call-by-value&#xff09;和按引用传递&#xff08;call-by-reference&#xff09;两种参数传递方式&#xff0c;但是具体该怎么选择&#xff0c;有时并不容易确定&#xff1a;通常对复杂类…...

【创建模式-单例模式(Singleton Pattern)】

赐萧瑀 实现方案饿汉模式懒汉式&#xff08;非线程安全&#xff09;懒汉模式&#xff08;线程安全&#xff09;双重检查锁定静态内部类 攻击方式序列化攻击反射攻击 枚举(最佳实践)枚举是一种类 唐 李世民 疾风知劲草&#xff0c;板荡识诚臣。 勇夫安识义&#xff0c;智者必怀仁…...

攻防世界你猜猜

打开题目发现是一串十六进制的数据 我尝试解码了一下没发现什么&#xff0c;最后找了一下发现因为这是504B0304开头的所以是一个zip文件头 用python代码还原一下 from Crypto.Util.number import * f open("guess.zip","wb") s 0x504B03040A0001080000…...

【Axure教程】标签版分级多选下拉列表

分级多选下拉列表是指一个下拉列表&#xff0c;它包含多个层次的选项&#xff0c;用户可以选择一个或多个选项。这些选项通常是根据某种层级关系来组织的&#xff0c;例如从上到下有不同的分类或者过滤条件&#xff0c;用户选择上层选项后&#xff0c;下层选项会发生变化&#…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)

目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 ​编辑​编辑 UDP的特征 socke函数 bind函数 recvfrom函数&#xff08;接收函数&#xff09; sendto函数&#xff08;发送函数&#xff09; 五、网络编程之 UDP 用…...

SQL注入篇-sqlmap的配置和使用

在之前的皮卡丘靶场第五期SQL注入的内容中我们谈到了sqlmap&#xff0c;但是由于很多朋友看不了解命令行格式&#xff0c;所以是纯手动获取数据库信息的 接下来我们就用sqlmap来进行皮卡丘靶场的sql注入学习&#xff0c;链接&#xff1a;https://wwhc.lanzoue.com/ifJY32ybh6vc…...

高保真组件库:开关

一:制作关状态 拖入一个矩形作为关闭的底色:44 x 22,填充灰色CCCCCC,圆角23,边框宽度0,文本为”关“,右对齐,边距2,2,6,2,文本颜色白色FFFFFF。 拖拽一个椭圆,尺寸18 x 18,边框为0。3. 全选转为动态面板状态1命名为”关“。 二:制作开状态 复制关状态并命名为”开…...