javaEE初阶————多线程初阶(3)
大家新年快乐呀,今天是第三期啦,大家前几期的内容掌握的怎么样啦?
1,线程死锁
1.1 构成死锁的场景
a)一个线程一把锁
这个在java中是不会发生的,因为我们之前讲的可重入机制,在其他语言中可能会发生的;
public static void main(String[] args) throws InterruptedException {Object locker = new Object();Thread t1 = new Thread(()->{synchronized (locker){synchronized (locker){System.out.println(1111);}}});t1.start();t1.join();System.out.println("main");}
按理来说,t1线程刚进synchronized就获取到了锁对象,就要保持,进入第二个synchronized就要请求第一个锁对象,第一个要保持不给你锁对象,它让第二个先给他,第二个synchronized说你先给我我才有锁对象给你呀,它俩就这么一直僵持着,但是java有可重入机制不会发生这样的死锁的;
b)两个线程两把锁
我们来模拟一个吃饺子的过程,小明小亮吃饺子,有酱油和醋对应两把锁,他们喜欢这两个东西一起加(我不喜欢),
public class Demo2 {public static void main(String[] args) throws InterruptedException {Object locker1 = new Object();//酱油Object locker2 = new Object();//醋Thread t1 = new Thread(()->{synchronized (locker1){System.out.println("获取到了酱油");try {Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}synchronized (locker2){System.out.println("酱油和醋都是" + Thread.currentThread().getName() + "的啦");}}},"小明");Thread t2 = new Thread(()->{synchronized (locker2){System.out.println("获取到了醋");try {Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}synchronized (locker1){System.out.println("酱油和醋都是" + Thread.currentThread().getName() + "的啦");}}},"小亮");t1.start();t2.start();}
}
我们来看运行结果

没有人获得酱油和醋,并且程序也没有正常停止,

这俩线程都因为锁竞争阻塞了,这就构成了死锁,我们加那个sleep是为了保证小亮拿醋,小明拿酱油之后再竞争互相的,不然可能就小明太快了直接全拿走了,或者小亮全拿走了;
c)n个线程m把锁

一个很经典的模型,哲学家就餐问题:
1,哲学家可以放下筷子思考
2,哲学家拿筷子可以吃面条(没有洁癖)两根才能吃
但是哲学家都很固执,拿到了筷子是不会放手的,那么如果在当前这个图上每个人都想吃面条,每个人都到拿到了面前的筷子,要吃面条还需要一个筷子,他们就会想要别人的筷子,然而每个人都不会放开自己的筷子,你等我,我等你,最后大家都饿死,这就构成了死锁;但是按理来说这个模型出现这样的情况非常非常低那么中国10几亿人,这个概率就会无限放大,线程安全要做到完全没有危险的概率;
1.2 死锁的四个必要条件
a)互斥(基本特性)
一个线程获取到锁,其他线程再想获得这个锁就要阻塞等待;
b)不可剥夺(基本特性)
也可以叫不可抢占,如果线程1获取到了锁,线程2再想获取锁是不可以抢夺的,必须阻塞等待;
c)请求和保持
一个线程获取了锁1之后再不放弃锁1的前提下获取锁2;
d)循环等待
a等待b,b等待c,c等待d,d等待a;构成死锁循环;
1.3 如何避免死锁
我们刚才说的构成死锁的四种情况中,互斥和不可剥夺是锁的基本特性,我们是改变不了的,我们只能去改变(请求保持和循环等待);
a)打破请求和保持
请求和保持大概率是发生在嵌套中的,我们可以用并列来代替嵌套,但是通用性较低;
我们就拿刚才的吃饺子来举例子把;
public class Demo1 {public static void main(String[] args) {Object locker1 = new Object();//酱油Object locker2 = new Object();//醋Thread t1 = new Thread(()->{synchronized (locker1){System.out.println("小明拿到酱油");}try {Thread.sleep(1111);} catch (InterruptedException e) {throw new RuntimeException(e);}synchronized (locker2){System.out.println("小明拿到醋");}},"小明");Thread t2 = new Thread(()->{synchronized (locker1){System.out.println("小亮拿到酱油");}try {Thread.sleep(1111);} catch (InterruptedException e) {throw new RuntimeException(e);}synchronized (locker2){System.out.println("小亮拿到醋");}},"小亮");t1.start();t2.start();}
}

并列锁,虽然没有构成死锁,但是违背了我们的想法就是让小明和小亮获得两个锁,刚才说的通用性不强也是在这里;
b)打破循环等待
第二个方法,改变加锁的顺序,我们还有吃饺子的例子,但是这次要拿到两个锁:
public class Demo2 {public static void main(String[] args) {Object locker1 = new Object();//酱油Object locker2 = new Object();//醋Thread t1 = new Thread(()->{synchronized (locker1){System.out.println("小明拿到酱油啦");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}synchronized (locker2){System.out.println("小明拿到醋和酱油啦");}}},"小明");Thread t2 = new Thread(()->{synchronized (locker1){System.out.println("小亮拿到酱油啦");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}synchronized (locker2){System.out.println("小亮拿到醋和酱油啦");}}},"小亮");t1.start();t2.start();}
}
我们改变了加锁的顺序,

也是能避免死锁问题的;
———————————————————————————————————————————
2,内存可见性
这也是导致线程安全的问题之一
我们来写一个例子嗷:
import java.util.Scanner;public class Demo3 {static int i = 0;public static void main(String[] args) {Object obj = new Object();Thread t1 = new Thread(()->{while(i==0){}System.out.println("结束");});Thread t2 = new Thread(()->{try {Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}Scanner scanner = new Scanner(System.in);synchronized (obj){i = scanner.nextInt();}});t1.start();t2.start();}
}
我们来看这个代码,t1线程根据i的数值一直循环直到i的值被t2线程修改才停止,事实是这样的吗。我们来试试,

无法暂停,这是为啥:
这就是因为内存可见性问题,程序员的水平参差不齐,java大佬为了照顾我们这样的小卡拉米,就弄了个编译器优化,所以我们写的代码并不会直接执行,我们刚才写的while(i==0)这段代码,我们要等待t2线程来修改i,可能我们就用了几秒的时间但对于t1线程,这这边是沧海桑田,万物轮回,谁还记得什么t1呀它等于0就得了,再底层一点解释呢,就是有“工作内存” 和 “主内存”我们应该是从主内存中拿到数据,放到工作内存中,再从工作内存放回主内存,但是这么一直一直重复,去主内存的时间开销是工作内存的几千倍,编译器就不去主内存了直接去工作内存中拿数据,但是后期修改了主内存,然而此处代码已经完全忽略主内存了,就无法修改了;这就是内存可见性问题那么怎么避免呢?
———————————————————————————————————————————
3,volatile 关键字
我们可以使用volatile关键字避免内存可见性问题;
3.1 volatile 能保证内存可见性
import java.util.Scanner;public class Demo3 {volatile static int i = 0;public static void main(String[] args) {Object obj = new Object();Thread t1 = new Thread(()->{while(i==0){}System.out.println("结束");});Thread t2 = new Thread(()->{try {Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}Scanner scanner = new Scanner(System.in);synchronized (obj){i = scanner.nextInt();}});t1.start();t2.start();}
}
看,解决了吧,就加了一个volatile;
3.2 volatile 不能保证原子性
还记得原子性吗,就是这个操作在底层是不是原子的,是不是分几步,再多线程中会影响到这个操作,我们拿之前那个两个线程修改一个整形:
public class Demo4 {volatile static int count = 0;public static void main(String[] args) throws InterruptedException {Thread t1 = new Thread(()->{for(int i=0;i<100000;i++){count++;}});Thread t2 = new Thread(()->{for(int i=0;i<100000;i++){count++;}});t1.start();t2.start();t1.join();t2.join();System.out.println("Final count: " + count);}
}

所有我们只有使用锁才行;
———————————————————————————————————————————
4,wait 和 notify
这是个什么玩意,线程不是随机调度,抢占式执行的吗,我们可以用这个玩意稍加限制,协调线程之间的逻辑顺序;
4.1 wait() 方法
这个东西跟锁和sleep不一样,都是等待,但是是有区别的,wait()是等的时候会释放锁,被唤醒再拿到锁而sleep这个byd它抱着锁睡,............锁的话就是阻塞等待嘛,
我们来试试wait()方法是搭配锁来使用的,最好还要加while循环
public class Demo5 {public static void main(String[] args) {Object locker = new Object();Thread t1 = new Thread(()->{System.out.println("Thread 1");synchronized (locker){System.out.println(1000);try {locker.wait();} catch (InterruptedException e) {throw new RuntimeException(e);}System.out.println(2000);}});t1.start();}
}
我们来看看运行结果

死等,因为没有东西能够唤醒wait();
我们可以设置超时时间,也可以使用notify方法;
public class Demo5 {public static void main(String[] args) {Object locker = new Object();Thread t1 = new Thread(()->{System.out.println("Thread 1");synchronized (locker){System.out.println(1000);try {locker.wait(2000);} catch (InterruptedException e) {throw new RuntimeException(e);}System.out.println(3000);}});t1.start();}
}

这样代码会在2秒后打印3000;
4.2 notify() 方法
用来唤醒wait()注意这些都是搭配锁对象来用的;
对于notify,如果存在多个使用同一个锁对象的wait,它没有规律,会随机唤醒一个wait
public class Demo6 {public static void main(String[] args) throws InterruptedException {Object locker = new Object();Thread t1 = new Thread(()->{System.out.println("Thread 1");synchronized (locker){System.out.println("线程1获得锁");try {locker.wait();} catch (InterruptedException e) {throw new RuntimeException(e);}System.out.println("线程1释放锁");}});Thread t2 = new Thread(()->{System.out.println("Thread 2");synchronized (locker){System.out.println("线程2获得锁");try {locker.wait();} catch (InterruptedException e) {throw new RuntimeException(e);}System.out.println("线程2释放锁");}});t1.start();t2.start();Thread.sleep(1000);synchronized (locker){locker.notify();}}
}
线程1成功释放了锁,说明notify唤醒了线程1的waite
我们再试试

4.3 notifyAll() 方法
这个就是全部释放
public class Demo7 {public static void main(String[] args) throws InterruptedException {Object locker = new Object();Thread t1 = new Thread(()->{System.out.println("Thread 1");synchronized (locker){System.out.println("线程1获得锁");try {locker.wait();} catch (InterruptedException e) {throw new RuntimeException(e);}System.out.println("线程1释放锁");}});Thread t2 = new Thread(()->{System.out.println("Thread 2");synchronized (locker){System.out.println("线程2获得锁");try {locker.wait();} catch (InterruptedException e) {throw new RuntimeException(e);}System.out.println("线程2释放锁");}});t1.start();t2.start();Thread.sleep(1000);synchronized (locker){locker.notifyAll();}}
}
完美
4.4 wait 和 sleep的对比
这个没啥好说的了,wait先加锁,到。wait()操作的时候释放锁,唤醒的时候再拿着锁,而sleep纯抱着锁睡,还会被interrupt唤醒,说实话抱着锁睡听不好的,可能会有很多线程都等着它很浪费时间的,sleep会释放Cpu的资源,不再占用了;就这样吧,大家加油,等我更新下一期;
相关文章:
javaEE初阶————多线程初阶(3)
大家新年快乐呀,今天是第三期啦,大家前几期的内容掌握的怎么样啦? 1,线程死锁 1.1 构成死锁的场景 a)一个线程一把锁 这个在java中是不会发生的,因为我们之前讲的可重入机制,在其他语言中可…...
eggnog后kegg结果提取和注释
首先进入KEGG BRITE: KEGG Orthology (KO) 下载json文件 用python处理一下 import json import re import osos.chdir("C:/Users/fordata/Downloads/") with open("ko00001.json","r") as f:fj f.read()kojson json.loads(fj)with open(&qu…...
shell脚本控制——处理信号
Linux利用信号与系统中的进程进行通信。你可以通过对脚本进行编程,使其在收到特定信号时执行某些命令,从而控制shell脚本的操作。 1.重温Linux信号 Linux系统和应用程序可以产生超过30个信号。下表列出了在shell脚本编程时会遇到的最常见的Linux系统信…...
Doris更新某一列数据完整教程
在Doris,要更新数据,并不像mysql等关系型数据库那样方便,可以用update set来直接更新某个列。在Doris只能进行有限的更新,官方文档如下: UPDATE - Apache Doris 1、使用Doris自带的Update功能 描述 该语句是为进行对数据进行更新的操作,UPDATE 语句目前仅支持 UNIQUE…...
VIVADO生成DCP和EDF指南
VIVADO生成DCP和EDF 文章目录 VIVADO生成DCP和EDF前言一、DCP封装二、EDF封装 前言 详细步骤就不贴图了,网上一大堆 在Vivado中,常用的三种封装形式有三种: ● IP ● edif ● dcp 在下文之前,先看几个概念 out_of_context&…...
Python中字节顺序、大小与对齐方式:深入理解计算机内存的底层奥秘
在计算机科学的世界里,理解数据的存储方式是每个程序员必备的技能。无论是处理网络通信、文件读写,还是进行底层系统编程,字节顺序(Endianness)、数据大小(Size)和对齐方式(Alignmen…...
在亚马逊云科技上云原生部署DeepSeek-R1模型(上)
DeepSeek-R1在开源版本发布的第二天就登陆了亚马逊云科技AWS云平台,这个速度另小李哥十分震惊。这又让我想起了在亚马逊云科技全球云计算大会re:Invent2025里,亚马逊CEO Andy Jassy说过的:随着目前生成式AI应用规模的扩大,云计算的…...
Redis实现分布式锁详解
前言 用 Redis 实现分布式锁,是我们常见的实现分布式锁的一种方式 下面是 redis 实现 分布式锁的四种方式,每种方式都有一定的问题,直到最后的 zookeeper 先透露一下: Redission 解决了 set ex nx 无法自动续期的问题 RedLo…...
表单标签(使用场景注册页面)
表单域(了解即可,还要到学习服务器阶段才可以真正送到后台) 定义了一个区域了之后,可以把这部分区域发送到后台上 <form action“url地址” method“提交方式” name"表单域名称">各种表单元素控件 </form>…...
c++ template-3
第 7 章 按值传递还是按引用传递 从一开始,C就提供了按值传递(call-by-value)和按引用传递(call-by-reference)两种参数传递方式,但是具体该怎么选择,有时并不容易确定:通常对复杂类…...
【创建模式-单例模式(Singleton Pattern)】
赐萧瑀 实现方案饿汉模式懒汉式(非线程安全)懒汉模式(线程安全)双重检查锁定静态内部类 攻击方式序列化攻击反射攻击 枚举(最佳实践)枚举是一种类 唐 李世民 疾风知劲草,板荡识诚臣。 勇夫安识义,智者必怀仁…...
攻防世界你猜猜
打开题目发现是一串十六进制的数据 我尝试解码了一下没发现什么,最后找了一下发现因为这是504B0304开头的所以是一个zip文件头 用python代码还原一下 from Crypto.Util.number import * f open("guess.zip","wb") s 0x504B03040A0001080000…...
【Axure教程】标签版分级多选下拉列表
分级多选下拉列表是指一个下拉列表,它包含多个层次的选项,用户可以选择一个或多个选项。这些选项通常是根据某种层级关系来组织的,例如从上到下有不同的分类或者过滤条件,用户选择上层选项后,下层选项会发生变化&#…...
DeepSeek图解10页PDF
以前一直在关注国内外的一些AI工具,包括文本型、图像类的一些AI实践,最近DeepSeek突然爆火,从互联网收集一些资料与大家一起分享学习。 本章节分享的文件为网上流传的DeepSeek图解10页PDF,免费附件链接给出。 1 本地 1 本地部…...
Centos7 停止维护,docker 安装
安装docker报错 执行docker安装命令:sudo yum install -y docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin,出现如下错误 更换yum源 [rootlocalhost yum.repos.d]# sudo mv /etc/yum.repos.d/CentOS-Base.repo /et…...
日志级别修改不慎引发的一场CPU灾难
背景 今天下午16.28有同事通过日志配置平台将某线上应用部分包的日志等级由error调为info,进而导致部分机器CPU升高,甚至有机器CPU达到100%,且ygc次数增加,耗时增加到80~100ms。 故障发现与排查 16.28陆续出现线上C…...
FPGA实现SDI视频缩放转UltraScale GTH光口传输,基于GS2971+Aurora 8b/10b编解码架构,提供2套工程源码和技术支持
目录 1、前言工程概述免责声明 2、相关方案推荐我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目我这里已有的 GT 高速接口解决方案本博已有的 SDI 编解码方案我这里已有的FPGA图像缩放方案 3、工程详细设计方案工程设计原理框图SDI 输入设备GS2971芯片BT1120转RGB…...
二级C语言题解:矩阵主、反对角线元素之和,二分法求方程根,处理字符串中 * 号
目录 一、程序填空📝 --- 矩阵主、反对角线元素之和 题目📃 分析🧐 二、程序修改🛠️ --- 二分法求方程根 题目📃 分析🧐 三、程序设计💻 --- 处理字符串中 * 号 题目…...
利用 Python 爬虫获取按关键字搜索淘宝商品的完整指南
在电商数据分析和市场研究中,获取商品的详细信息是至关重要的一步。淘宝作为中国最大的电商平台之一,提供了丰富的商品数据。通过 Python 爬虫技术,我们可以高效地获取按关键字搜索的淘宝商品信息。本文将详细介绍如何利用 Python 爬虫技术获…...
什么是幂等性
幂等性(Idempotence)是一个在数学、计算机科学等多个领域都有重要应用的概念,下面从不同领域为你详细介绍其含义。 数学领域 在数学中,幂等性是指一个操作或函数进行多次相同的运算,其结果始终与进行一次运算的结果相…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...

