当前位置: 首页 > news >正文

eggnog后kegg结果提取和注释

首先进入KEGG BRITE: KEGG Orthology (KO)

下载json文件

用python处理一下

import json
import re
import osos.chdir("C:/Users/fordata/Downloads/")
with open("ko00001.json","r") as f:fj = f.read()kojson = json.loads(fj)with open("newKegg.tsv", "w") as k:for i in kojson['children']:ii = i['name'].replace(" ", "\t", 1)for j in i['children']:jj = j['name'].replace(" ", "\t", 1)for m in j['children']:if re.findall(r"ko\d{5}", m['name']):mm = "ko" + m['name'].replace(" ", "\t", 1)else:mm = m['name'].replace(" ", "\t", 1)try:for n in m['children']:if ";" in n['name']:nn = n['name'].replace(" ", "\t", 1).replace("; ", "\t", 1)else:nn = n['name'].replace(" ", "\t \t", 1)k.write(ii + "\t" + jj + "\t" + mm + "\t" + nn + "\n")except:nn = " \t \t "k.write(ii+"\t"+jj+"\t"+mm+"\t"+nn+"\n")

得到结果 

写个代码看看把keggKO和tpm关联起来

#! /usr/bin/env python
#########################################################
# mix eggnog(kegg) result with tpm
# written by PeiZhong in IFR of CAASimport argparse
import pandas as pd# Parse command-line arguments
parser = argparse.ArgumentParser(description='Mix eggnog(kegg) result with TPM')
parser.add_argument('--result', "-r", required=True, help='Path to eggnog result file')
parser.add_argument('--tpm', "-t", required=True, help='Path to TPM table file')
parser.add_argument('--out', "-o", required=True, help='Path to output file')args = parser.parse_args()# Step 1: Read input files
print("Reading input files")# Read dbcan result
df_result = {}
df_kegg = set()  # Use a set to store unique CAZy families
with open(args.result, "r") as f:for line in f:if "#" not in line:protein_id = line.split("\t")[0]kegg_str = line.split("\t")[11]if "-" != kegg_str:df_result[protein_id] = kegg_str# Extract CAZy families and remove duplicatesfamilies = set(entry.split(":")[1].strip() for entry in kegg_str.split(','))df_kegg.update(families)  # Add unique families to the global set# Read TPM file
df_tpm = pd.read_csv(args.tpm, sep='\t')# Step 2: Process dbcan results and calculate TPM sums for each sample
print("Processing dbcan results and calculating TPM sums for each sample")# Initialize a dictionary to store TPM sums for each CAZy family and sample
kegg_tpm_sums = {ko: {sample: 0.0 for sample in df_tpm.columns[1:]} for ko in df_kegg}# Convert TPM table to a dictionary for faster lookup
tpm_dict = df_tpm.set_index(df_tpm.columns[0]).to_dict(orient='index')# Process each protein in the dbcan result
for protein_id, kegg_str in df_result.items():# Convert protein ID to gene ID by removing trailing "_number"if "_" in protein_id:gene_id = protein_id.rsplit("_", 1)[0]  # Split from right on the last "_"else:print(f"Warning: Protein ID {protein_id} has no underscore, using as gene ID")gene_id = protein_id# Get TPM values for this geneif gene_id not in tpm_dict:print(f"Warning: No TPM values found for {gene_id} (protein {protein_id})")continuetpm_values = tpm_dict[gene_id]# Extract unique CAZy families for this proteinfamilies = set(entry.split(':')[1].strip() for entry in kegg_str.split(','))# Update TPM sums for each unique CAZy familyfor family in families:if family in kegg_tpm_sums:for sample in df_tpm.columns[1:]:kegg_tpm_sums[family][sample] += tpm_values[sample]else:# Dynamically add new CAZy familieskegg_tpm_sums[family] = {sample: tpm_values[sample] for sample in df_tpm.columns[1:]}# Create and save output DataFrame
output_df = pd.DataFrame.from_dict(kegg_tpm_sums, orient='index')
output_df.index.name = 'CAZy_Family'
output_df.to_csv(args.out, sep='\t', float_format='%.2f')  # Round to 2 decimal places
print(f"Results saved to {args.out}")

得到 

kegg的对应level,在excel钟使用vlookup函数对应即可 

相关文章:

eggnog后kegg结果提取和注释

首先进入KEGG BRITE: KEGG Orthology (KO) 下载json文件 用python处理一下 import json import re import osos.chdir("C:/Users/fordata/Downloads/") with open("ko00001.json","r") as f:fj f.read()kojson json.loads(fj)with open(&qu…...

shell脚本控制——处理信号

Linux利用信号与系统中的进程进行通信。你可以通过对脚本进行编程,使其在收到特定信号时执行某些命令,从而控制shell脚本的操作。 1.重温Linux信号 Linux系统和应用程序可以产生超过30个信号。下表列出了在shell脚本编程时会遇到的最常见的Linux系统信…...

Doris更新某一列数据完整教程

在Doris,要更新数据,并不像mysql等关系型数据库那样方便,可以用update set来直接更新某个列。在Doris只能进行有限的更新,官方文档如下: UPDATE - Apache Doris 1、使用Doris自带的Update功能 描述​ 该语句是为进行对数据进行更新的操作,UPDATE 语句目前仅支持 UNIQUE…...

VIVADO生成DCP和EDF指南

VIVADO生成DCP和EDF 文章目录 VIVADO生成DCP和EDF前言一、DCP封装二、EDF封装 前言 详细步骤就不贴图了,网上一大堆 在Vivado中,常用的三种封装形式有三种: ● IP ● edif ● dcp 在下文之前,先看几个概念 out_of_context&…...

Python中字节顺序、大小与对齐方式:深入理解计算机内存的底层奥秘

在计算机科学的世界里,理解数据的存储方式是每个程序员必备的技能。无论是处理网络通信、文件读写,还是进行底层系统编程,字节顺序(Endianness)、数据大小(Size)和对齐方式(Alignmen…...

在亚马逊云科技上云原生部署DeepSeek-R1模型(上)

DeepSeek-R1在开源版本发布的第二天就登陆了亚马逊云科技AWS云平台,这个速度另小李哥十分震惊。这又让我想起了在亚马逊云科技全球云计算大会re:Invent2025里,亚马逊CEO Andy Jassy说过的:随着目前生成式AI应用规模的扩大,云计算的…...

Redis实现分布式锁详解

前言 用 Redis 实现分布式锁,是我们常见的实现分布式锁的一种方式 下面是 redis 实现 分布式锁的四种方式,每种方式都有一定的问题,直到最后的 zookeeper 先透露一下: Redission 解决了 set ex nx 无法自动续期的问题 RedLo…...

表单标签(使用场景注册页面)

表单域&#xff08;了解即可&#xff0c;还要到学习服务器阶段才可以真正送到后台&#xff09; 定义了一个区域了之后&#xff0c;可以把这部分区域发送到后台上 <form action“url地址” method“提交方式” name"表单域名称">各种表单元素控件 </form>…...

c++ template-3

第 7 章 按值传递还是按引用传递 从一开始&#xff0c;C就提供了按值传递&#xff08;call-by-value&#xff09;和按引用传递&#xff08;call-by-reference&#xff09;两种参数传递方式&#xff0c;但是具体该怎么选择&#xff0c;有时并不容易确定&#xff1a;通常对复杂类…...

【创建模式-单例模式(Singleton Pattern)】

赐萧瑀 实现方案饿汉模式懒汉式&#xff08;非线程安全&#xff09;懒汉模式&#xff08;线程安全&#xff09;双重检查锁定静态内部类 攻击方式序列化攻击反射攻击 枚举(最佳实践)枚举是一种类 唐 李世民 疾风知劲草&#xff0c;板荡识诚臣。 勇夫安识义&#xff0c;智者必怀仁…...

攻防世界你猜猜

打开题目发现是一串十六进制的数据 我尝试解码了一下没发现什么&#xff0c;最后找了一下发现因为这是504B0304开头的所以是一个zip文件头 用python代码还原一下 from Crypto.Util.number import * f open("guess.zip","wb") s 0x504B03040A0001080000…...

【Axure教程】标签版分级多选下拉列表

分级多选下拉列表是指一个下拉列表&#xff0c;它包含多个层次的选项&#xff0c;用户可以选择一个或多个选项。这些选项通常是根据某种层级关系来组织的&#xff0c;例如从上到下有不同的分类或者过滤条件&#xff0c;用户选择上层选项后&#xff0c;下层选项会发生变化&#…...

DeepSeek图解10页PDF

以前一直在关注国内外的一些AI工具&#xff0c;包括文本型、图像类的一些AI实践&#xff0c;最近DeepSeek突然爆火&#xff0c;从互联网收集一些资料与大家一起分享学习。 本章节分享的文件为网上流传的DeepSeek图解10页PDF&#xff0c;免费附件链接给出。 1 本地 1 本地部…...

Centos7 停止维护,docker 安装

安装docker报错 执行docker安装命令&#xff1a;sudo yum install -y docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin&#xff0c;出现如下错误 更换yum源 [rootlocalhost yum.repos.d]# sudo mv /etc/yum.repos.d/CentOS-Base.repo /et…...

日志级别修改不慎引发的一场CPU灾难

背景 今天下午16.28有同事通过日志配置平台将某线上应用部分包的日志等级由error调为info&#xff0c;进而导致部分机器CPU升高&#xff0c;甚至有机器CPU达到100%&#xff0c;且ygc次数增加&#xff0c;耗时增加到80&#xff5e;100ms。 故障发现与排查 16.28陆续出现线上C…...

FPGA实现SDI视频缩放转UltraScale GTH光口传输,基于GS2971+Aurora 8b/10b编解码架构,提供2套工程源码和技术支持

目录 1、前言工程概述免责声明 2、相关方案推荐我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目我这里已有的 GT 高速接口解决方案本博已有的 SDI 编解码方案我这里已有的FPGA图像缩放方案 3、工程详细设计方案工程设计原理框图SDI 输入设备GS2971芯片BT1120转RGB…...

二级C语言题解:矩阵主、反对角线元素之和,二分法求方程根,处理字符串中 * 号

目录 一、程序填空&#x1f4dd; --- 矩阵主、反对角线元素之和 题目&#x1f4c3; 分析&#x1f9d0; 二、程序修改&#x1f6e0;️ --- 二分法求方程根 题目&#x1f4c3; 分析&#x1f9d0; 三、程序设计&#x1f4bb; --- 处理字符串中 * 号 题目&#x1f…...

利用 Python 爬虫获取按关键字搜索淘宝商品的完整指南

在电商数据分析和市场研究中&#xff0c;获取商品的详细信息是至关重要的一步。淘宝作为中国最大的电商平台之一&#xff0c;提供了丰富的商品数据。通过 Python 爬虫技术&#xff0c;我们可以高效地获取按关键字搜索的淘宝商品信息。本文将详细介绍如何利用 Python 爬虫技术获…...

什么是幂等性

幂等性&#xff08;Idempotence&#xff09;是一个在数学、计算机科学等多个领域都有重要应用的概念&#xff0c;下面从不同领域为你详细介绍其含义。 数学领域 在数学中&#xff0c;幂等性是指一个操作或函数进行多次相同的运算&#xff0c;其结果始终与进行一次运算的结果相…...

群晖NAS如何通过WebDAV和内网穿透实现Joplin笔记远程同步

文章目录 前言1. 检查群晖Webdav 服务2. 本地局域网IP同步测试3. 群晖安装Cpolar工具4. 创建Webdav公网地址5. Joplin连接WebDav6. 固定Webdav公网地址7. 公网环境连接测试 前言 在数字化浪潮的推动下&#xff0c;笔记应用已成为我们记录生活、整理思绪的重要工具。Joplin&…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库&#xff08;如 Redisson&#xff09;相比于开发者自己基于 Redis 命令&#xff08;如 SETNX, EXPIRE, DEL&#xff09;手动实现分布式锁&#xff0c;提供了巨大的便利性和健壮性。主要体现在以下几个方面&#xff1a; 原子性保证 (Atomicity)&#xff…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

VisualXML全新升级 | 新增数据库编辑功能

VisualXML是一个功能强大的网络总线设计工具&#xff0c;专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑&#xff08;如DBC、LDF、ARXML、HEX等&#xff09;&#xff0c;并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...

Axure 下拉框联动

实现选省、选完省之后选对应省份下的市区...

云安全与网络安全:核心区别与协同作用解析

在数字化转型的浪潮中&#xff0c;云安全与网络安全作为信息安全的两大支柱&#xff0c;常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异&#xff0c;并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全&#xff1a;聚焦于保…...