当前位置: 首页 > news >正文

DeepSeek LLM(初代)阅读报告

概况

这个是deepseek发布的第一版模型对应的技术报告,模型发布于23年11月,本报告发布于24年1月。

模型有7B和67B两个版本。

虽然本报告中还没有用上后面V2/V3和R1中的关键技术例如MLA、MTP、GRPO,但是报告中已经指明了MoE、强化学习等未来的方向,并且在infra方面给了比较多的重视,这也将是后续训练成本低的关键。

模型结构

模型设计上遵循了Llama的结构,也就是RMSNorm+RoPE位置编码等特征,MLP表达式: ,MLP的维度是隐藏层维度的8/3。

在67B模型中,使用了GQA,下图可以看出,64个注意力头被分成了8组,每组的8个头共享相同的计算KV时的权重参数。

还有一点值得注意,67B模型的层数是95层,MLP的维度是隐藏层维度的8/3;而Llama-70B的模型层数是80层,MLP的维度是隐藏层维度的3.5倍。也就是说,deepseek LLM的结构更深更细。

训练

在训练过程中,没有使用余弦学习率调度器,而是使用多步学习率调度器:在2000个预热步骤之后达到最大学习率,处理80%的训练数据后学习率降到最大值的31.6%,处理90%后降低到10%

infra

  • 使用幻方自己研发的HAI-LLM训练框架来训练和评估大型语言模型。该框架集成了数据并行性、张量并行性、序列并行性和1F1B流水线并行性,正如在Megatron中所做的那样。
  • 我们还利用了flash attention技术来提高硬件利用率。
  • ZeRO-1被用来将 优化器状态 分割到 数据并行的各个 rank 上。
  • 我们还努力重叠计算和通信,以最小化额外的等待开销,包括最后一个微批处理的反向过程和ZeRO-1中的reduce-scatter操作,以及序列并行中的GEMM计算和all-gather/reduce-scatter。
  • 使用图融合和算子融合以加快训练速度,包括尽可能的LayerNorm、GEMM和Adam更新。为了提高模型训练的稳定性,我们在bf16精度下训练模型,但在fp32精度下累积梯度。
  • 在位交叉熵被用来减少GPU内存消耗,即:我们在交叉熵CUDA内核中实时将bf16日志转换为fp32精度(而不是预先在HBM中转换),计算相应的bf16梯度,并用其梯度覆盖日志。
  • 模型权重和优化器状态每5分钟异步保存一次,这意味着在偶尔的硬件或网络故障的最坏情况下,我们不会丢失超过5分钟的训练。这些临时模型检查点定期被清理,以避免消耗过多的存储空间。我们还支持从不同的3D并行配置恢复训练,以应对计算集群负载的动态变化。
  • 至于评估,在生成任务中使用vLLM,并在非生成任务中使用连续批处理,以避免手动批处理大小调整并减少标记填充。

可以看出deepseek在最初的训练过程中,就注重通过优化infra来降低训练成本。

scaling law

这一块的研究,就是为了从模型的规模找到该规模对应的最佳超参数,即最佳lr和最佳batch_size

讨论了scaling-law和超参数之间的关系,最主要的超参数就是learning_rate和batch_size。通过研究超参数与计算预算(模型规模*数据量)之间的关系,提出了超参数的scaling-law,以确保不同计算预算下的模型能达到最优性能。

模型规模并没有用模型参数量来衡量,而是用非嵌入的 FLOPs/token (M) ,也就是每个token计算时需要的浮点计算数。报告中使用了来表示模型规模,也就是每个token需要经历的transformer layer中的计算量,而没有把也计算在参数量中的词表嵌入考虑在内。

于是计算预算的公式由变成了,N是模型参数,M是上面的非嵌入的flops/token,D是数据量

超参数的scaling-law:

下边这个公式展示了两个超参数与模型规模之间的关系,下图表示了随着模型规模的变化,超参数也发生变化。

通过计算预算来选择合适的数据量和模型规模:

通常情况下,都是现有硬件和训练时长的预算,下一步才开始规划模型的规模和训练数据的规模。因此,需要通过给定的C来得到M和D,使得训练过程的损失最小。

具体是如何选择的:

  • 选择了不同的计算预算范围(例如从 1e17到 3e20),对每个计算预算 C,设计了多个不同的 模型规模(M)数据规模(D) 分配方案。
  • 通过 IsoFLOP 方法,可以为每种分配方案计算出相应的 泛化误差
  • 得到一堆泛化误差的数据点,这些数据点构成了一个 损失缩放曲线,表示随着计算预算的变化,模型的泛化误差如何变化。

对齐

人类偏好对齐分成SFT和DPO两步,共有150万条数据

SFT的数据集主要有分成有用信息和无害化两部分,其中有用信息有一般对话、数学和编程。

在微调过程中,有可能出现无限重复问题,也就是不停输出相同的内容。这一现象会随着SFT中数学内容比例增加而提升,这是因为数学中偶尔包含推理中的相似模式。为了解决这一问题,使用了两阶段SFT和DPO来减少重复。

两阶段SFT,第一阶段涉及使用所有可用数据进行微调,第二阶段专注使用对话数据进行微调。

一些讨论:

  • 在训练数据中添加多选题能显著提升模型解答多选的能力,因为解答多选不仅需要拥有相关知识,还需要理解选项含义。但是这并不会带来对话任务上的提升,因此为了防止在基准任务过拟合,在训练和微调中完全排除掉了多选数据
  • 关于system prompt,deepseek LLM在Llama的基础上进行了轻微改动,最终在67B的模型上有所提升,但7B模型上性能反而下降。这可能是因为:更大的模型对系统提示背后的意图有更好的理解,使它们能够更有效地遵循指示并生成更优秀的回答。另一方面,较小的模型难以充分理解系统提示,训练和测试之间的一致性可能对它们的性能产生负面影响。

总结

我们介绍了DeepSeek LLMs,一系列开源模型,这些模型是基于2T tokens的庞大数据集从零开始训练的。在本文中,我们提供了关于超参数选择、scaling-law以及我们进行的各种微调尝试的深入解释。

  • 我们校准了之前工作的scaling-law,并提出了一种新的最优模型/数据扩展分配策略。
  • 此外,我们提出了一种方法,可以在给定的计算预算下预测接近最优的批量大小和学习率。
  • 我们进一步得出结论,扩展规律与数据质量有关,这可能是不同工作中扩展行为变化的根本原因。在扩展规律的指导下,我们使用最佳超参数进行预训练,并提供了全面的评估。

DeepSeek Chat具有其他大型语言模型普遍存在的公认限制,包括预训练后缺乏持续的知识更新、可能生成未经验证的建议等非事实信息,以及倾向于产生幻觉。此外,值得注意的是,我们的中文数据的初始版本并不全面,这可能导致在某些特定中文主题上的性能不佳。由于我们的数据主要由中文和英文来源组成,模型在其他语言上的熟练程度仍然微妙,应谨慎对待。

DeepSeek LLM是一个长期项目,致力于推进开源语言模型。

  • 很快,我们将分别发布我们在代码智能和**混合专家(MoE)**技术报告。它们展示了我们如何创建高质量的代码数据进行预训练,以及如何设计稀疏模型以实现密集模型的性能。
  • 目前,我们正在构建一个更大且改进的数据集,用于即将到来的DeepSeek LLM版本。我们希望在下一个版本中,推理能力、中文知识、数学和代码能力将得到显著提升。
  • 我们的对齐团队致力于研究如何向公众提供有帮助、诚实和安全的模型。我们的初步实验表明,强化学习可以提升模型的复杂推理能力。

个人总结:23年发布的第一版本的DeepSeek LLM是对开源LLM Llama的复刻,技术团队在复刻的过程中积累了自己构建的训练数据和训练经验,其中也包含了一些对超参数选择的探究。但整体来说,由于训练数据量不够大等原因,表现上也没有很突出。不过,此时团队已经发现这些问题,并已经在数据集、MoE架构以及RL方面有了清晰的认知和具体的行动,这将为V2和V3的出现奠定基础。

相关文章:

DeepSeek LLM(初代)阅读报告

概况 这个是deepseek发布的第一版模型对应的技术报告,模型发布于23年11月,本报告发布于24年1月。 模型有7B和67B两个版本。 虽然本报告中还没有用上后面V2/V3和R1中的关键技术例如MLA、MTP、GRPO,但是报告中已经指明了MoE、强化学习等未来…...

JAVA异步的TCP 通讯-服务端

一、服务端代码示例 import java.io.IOException; import java.net.InetSocketAddress; import java.nio.ByteBuffer; import java.nio.channels.AsynchronousServerSocketChannel; import java.nio.channels.AsynchronousSocketChannel; import java.nio.channels.Completion…...

高效协同,Tita 助力项目管理场景革新

在当今快节奏、高度竞争的商业环境中,企业面临着前所未有的挑战:如何在有限资源下迅速响应市场变化,确保多个项目的高效执行并达成战略目标?答案就在于优化项目集程管理。而在这个过程中,Tita项目管理产品以其独特的优…...

【AIGC魔童】DeepSeek v3提示词Prompt书写技巧

【AIGC魔童】DeepSeek v3提示词Prompt书写技巧 (1)基础通用公式(适用80%场景)(2)问题解决公式(决策支持)(3)创意生成公式(4)学习提升公…...

Vue | 透传 Attributes(非 prop 的 attribute )

文章目录 引言I Attribute 继承II 禁用 attribute 继承禁用 attribute 继承的常见场景通过将 inheritAttrs 选项设置为 false从 3.3 开始可在 `<script setup>` 中使用defineOptions例子引言 “透传 attribute”指的是传递给一个组件,却没有被该组件声明为 props 或 emi…...

启明星辰发布MAF大模型应用防火墙产品,提升DeepSeek类企业用户安全

2月7日&#xff0c;启明星辰面向DeepSeek等企业级大模型业务服务者提供的安全防护产品——天清MAF&#xff08;Model Application Firewall&#xff09;大模型应用防火墙产品正式发布。 一个新赛道将被开启…… DeepSeek的低成本引爆赛道规模 随着DeepSeek成为当前最热的现象级…...

Vuex 解析:从 Vue 2 到 Vue 3 的演变与最佳实践

Vuex 是 Vue.js 中的状态管理模式&#xff0c;广泛应用于 Vue 2 和 Vue 3 中&#xff0c;其内部实现存在一些差异。 1. 什么是 Vuex &#xff1f; Vuex 是 Vue.js 官方提供的状态管理库&#xff0c;用于集中管理应用的所有组件的状态。主要是通过一种集中化的方式来管理共享状…...

一文解释nn、nn.Module与nn.functional的用法与区别

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;零基础入门PyTorch框架_十二月的猫的博客-CSDN博客 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 目录 …...

日志统计(acWing,蓝桥杯)

题目&#xff1a; 1238. 日志统计 题目 提交记录 讨论 题解 视频讲解 小明维护着一个程序员论坛。现在他收集了一份”点赞”日志&#xff0c;日志共有 NN 行。 其中每一行的格式是&#xff1a; ts id 表示在 tsts 时刻编号 idid 的帖子收到一个”赞”。 现在小明想…...

3个DeepSeek隐藏玩法

大家最近是不是都被DeepSeek-R1刷屏了 这款号称“中国版O1”的模型&#xff0c;不仅在数学和编程领域表现出色&#xff0c;中文写作能力也很强。 最重要的是&#xff0c;它在理解提示词方面有了很大突破&#xff0c;只要你能打字&#xff0c;它就能理解你的意思。 不过&…...

部署LLM模型到云端

文章目录 1 ECS 云服务器部署2 函数计算FC3 人工智能平台PAI-EAS4 大模型服务平台百炼压测实验结果显示,由于本地设备算力有限,本地部署的模型服务无法满足低延迟和高并发的需求。针对这类线上业务,可以考虑云端部署。 下面先来看看本地部署和云端部署的特点对比。 由上可…...

Python连接不同数据库的总结

Python连接不同数据库的总结 在数据驱动的现代应用开发中&#xff0c;Python凭借其丰富的库和强大的生态系统&#xff0c;成为连接各种数据库的理想编程语言。本文将深入探讨Python连接不同类型数据库的方法、常用库以及关键注意事项。 一、连接MySQL数据库 MySQL是广泛使用…...

web直播弹幕抓取分析 signature

声明: 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01; 前言 最近遇到太多难点了卡了很久&am…...

Linux ftrace 内核跟踪入门

文章目录 ftrace介绍开启ftraceftrace使用ftrace跟踪指定内核函数ftrace跟踪指定pid ftrace原理ftrace与stracetrace-cmd 工具KernelShark参考 ftrace介绍 Ftrace is an internal tracer designed to help out developers and designers of systems to find what is going on i…...

1Panel应用推荐:WordPress开源博客软件和内容管理系统

1Panel&#xff08;github.com/1Panel-dev/1Panel&#xff09;是一款现代化、开源的Linux服务器运维管理面板&#xff0c;它致力于通过开源的方式&#xff0c;帮助用户简化建站与运维管理流程。为了方便广大用户快捷安装部署相关软件应用&#xff0c;1Panel特别开通应用商店&am…...

【数据结构-C语言】绪论

文章目录 一、前言二、基本概念和术语2.1 数据元素、数据项和数据对象2.2 数据结构2.2.1 逻辑结构2.2.2 存储结构 2.3 时间复杂度 一、前言 数据结构部分是根据严蔚敏老师的《数据结构-C语言版第2版》书中内容整理的。 二、基本概念和术语 2.1 数据元素、数据项和数据对象 …...

java poi Excel 文件导入导出常见错误及解决方案

在使用 Apache POI 进行 Excel 文件的导入导出操作时&#xff0c;可能会遇到各种问题。以下是一些常见的错误及其解决方案&#xff1a; 一、文件格式相关问题 1. 文件格式不兼容 问题描述&#xff1a;尝试使用 HSSFWorkbook 读取 .xlsx 文件&#xff0c;或者使用 XSSFWorkbo…...

深入浅出DeepSeek LLM 以长远主义拓展开源语言模型

深入浅出地讲解DeepSeek LLM 以长远主义拓展开源语言模型 &#x1f31f; 1. 什么是 DeepSeek LLM&#xff1f; 大家想象一下&#xff0c;你在游戏里要打造一个超级英雄角色&#xff0c;选择最强的装备、技能点和升级策略。那么&#xff0c;DeepSeek LLM 就是 AI 界的“超级英雄…...

【Leetcode 每日一题】59. 螺旋矩阵 II

问题背景 给你一个正整数 n n n&#xff0c;生成一个包含 1 1 1 到 n 2 n ^ 2 n2 所有元素&#xff0c;且元素按顺时针顺序螺旋排列的 n n n \times n nn 正方形矩阵 m a t r i x matrix matrix。 数据约束 1 n 20 1 \times n \times 20 1n20 解题过程 定义方向数组…...

回退 android studio emulator 的版本

前情提要 最近用 frida 需要一个完全跑 arm64 的手机 os&#xff0c;因为雷电实时转义 arm 到 x64 的方案本质上还是 x64&#xff0c;会导致 frida 有 bug。查了一下有帖子说 android studio 自带的模拟器支持直接跑 arm64 的镜像 (Other Images) 直接跑跑不通&#xff0c;调…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...