DeepSeek——DeepSeek模型部署实战
摘要
文章主要介绍了DeepSeek大模型的本地部署方法、使用方式以及API接入相关内容。首先指出可通过下载Ollama来部署DeepSeek-R1模型,并给出了模型不同参数版本及存储信息。接着说明了如何通过Chatbox官网下载并接入DeepSeek API,以及如何接入本地部署模型。最后提及了DeepSeek官网使用和集成工具使用相关内容。
1. DeepSeek大模型本地部署
1.1. 下载Ollama(Ollama)
点击DeepSeek-R1
的链接可以看到有关deepseek-r1的详细介绍:
1.2. 部署deepseek-r1模型
目前deepseek-r1模型大小提供了7个选择:1.5b、7b、8b、14b、32b、70b、671b。
你可以根据你的硬件情况选择,通常模型大小(参数量)越大,模型的理解和生成能力越强,但也会消耗更多的计算资源。点击Download
按钮下载符合自己平台的Ollama:
我这里选择macOS,点击下载。下载文件大小不到200M,文件名为:Ollama-darwin.zip
。解压后打开Ollama应用程序,提示:
1.3. 使用deepseek-r1模型
按照提示,打开终端,使用 Command + Space 快捷键调用 terminal
:
这里Ollama默认给出的例子是下载/运行llama3.2大模型,我们这里不使用这个llama3.2模型,直接下载/运行deepseek,参数选择最小的1.5b,在终端窗口运行下面命令:
ollama run deepseek-r1:1.5b
jingyuzhao@jingyuzhao-mac ~ % ollama run deepseek-r1:1.5b
pulling manifest
pulling manifest
pulling manifest
pulling manifest
pulling manifest
pulling manifest
pulling aabd4debf0c8... 100% ▕████████████████████████████████████████▏ 1.1 GB
pulling 369ca498f347... 100% ▕████████████████████████████████████████▏ 387 B
pulling 6e4c38e1172f... 100% ▕████████████████████████████████████████▏ 1.1 KB
pulling f4d24e9138dd... 100% ▕████████████████████████████████████████▏ 148 B
pulling a85fe2a2e58e... 100% ▕████████████████████████████████████████▏ 487 B
verifying sha256 digest
writing manifest
success
>>> Send a message (/? for help)
这里就直接可以和DeepSeek对话了:
>>> Hi! Who are you?
<think></think>Hi! I'm DeepSeek-R1, an artificial intelligence assistant created by DeepSeek. I'm at your service
and would be delighted to assist you with any inquiries or tasks you may have.>>> 你好,你是谁?
<think></think>你好!我是DeepSeek-R1,一个由深度求索公司开发的智能助手。我擅长通过思考来帮您解答复杂的数学,代码和
逻辑推理等理工类问题。 Feel free to ask me anything you'd like me to know! >>> Send a message (/? for help)
2. DeepSeek大模型API接入
2.1. 下载Chatbox官方网站(Chatbox AI: Your AI Copilot, Best AI Client on any device, Free Download)
我这里还是Intel-based的MAC,下载的Chatbox-1.9.7.dmg
,大小100M多点,点击安装,按下面提示拖到Applications内:
2.2. Chatbox接入DeepSeek API
2.3. Chatbox接入DeepSeek本地部署模型
实际上,若选择这个你本地的DeepSeek模型。实际正确应该选择OLLAMA API,然后就可以看到我们上一步安装好的deepseek-r1:1.5b
。
配置好DeepSeek本地模型之后,就可以实现在断网情况下自由问答了,比如,此刻我正在写这篇文章,于是就问他帮我想名字:
我正在写一篇文章,手动部署DeepSeek本地模型在。请你帮我重新生成10个吸引眼球的标题供我选择。
3. DeepSeek大模型使用
3.1. DeepSeek官网使用(DeepSeek)
3.2. DeepSeek集成工具使用(https://poe.com/)
博文参考
- DeepSeek
- Ollama
- Chatbox AI: Your AI Copilot, Best AI Client on any device, Free Download
- https://poe.com/
相关文章:

DeepSeek——DeepSeek模型部署实战
摘要 文章主要介绍了DeepSeek大模型的本地部署方法、使用方式以及API接入相关内容。首先指出可通过下载Ollama来部署DeepSeek-R1模型,并给出了模型不同参数版本及存储信息。接着说明了如何通过Chatbox官网下载并接入DeepSeek API,以及如何接入本地部署模…...
zsh: command not found: pip
当你在终端输入 pip install ipykernel 时出现 zsh: command not found: pip 错误,这表明系统无法找到 pip 命令,下面为你详细分析可能的原因以及对应的解决办法。 可能的原因 Python 未安装:pip 是 Python 的包管理工具,若你的…...
机器学习数学基础:16.方程组
一、方程组基础概念 (一)定义 方程组是由若干个包含未知数的方程组合而成的集合。例如, { 3 x 2 y − z 7 2 x − y 3 z 5 x 4 y − 2 z 3 \begin{cases}3x 2y - z 7\\2x - y 3z 5\\x 4y - 2z 3\end{cases} ⎩ ⎨ ⎧3x2y−z7…...
即梦(Dreamina)技术浅析(四):生成对抗网络
即梦(Dreamina) 的生成对抗网络(GAN,Generative Adversarial Network)技术是其核心功能之一,用于生成高质量的图像、文本和视频内容。GAN 是一种深度学习模型,由生成器(Generator)和判别器(Discriminator)两部分组成,通过对抗训练的方式不断提升生成内容的质量。 …...

2025年软件测试五大趋势:AI、API安全、云测试等前沿实践
随着软件开发的不断进步,测试方法也在演变。企业需要紧跟新兴趋势,以提升软件质量、提高测试效率,并确保安全性,在竞争激烈的技术环境中保持领先地位。本文将深入探讨2025年最值得关注的五大软件测试趋势。 Parasoft下载https://…...
Vue混入(Mixins)与插件开发深度解析
Vue混入(Mixins)与插件开发深度解析 Vue混入(Mixins)与插件开发深度解析1. Vue混入(Mixins)核心概念1.1 什么是混入1.1.1 本质定义与技术定位1.1.2 混入与相关概念的对比1.1.3 适用场景分析1.1.4 设计哲学与…...

【C++】C++11
目录 C11简介 统一的列表初始化 {}初始化 std::initializer_list 声明 auto decltype nullptr 范围for循环 智能指针 STL中的一些变化 右值引用和移动语义 左值引用和右值引用 右值引用的意义 完美转发 lambda表达式 新的类功能 可变参数模版 包装器 func…...

k8sollama部署deepseek-R1模型,内网无坑
这是目录 linux下载ollama模型文件下载到本地,打包迁移到k8s等无网络环境使用下载打包ollama镜像非k8s环境使用k8s部署访问方式非ollama运行deepseek模型linux下载ollama 下载后可存放其他服务器 curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linu…...
mysql8 C++源码中创建表函数,表字段最大数量限制,表行最大存储限制
在 MySQL 8 的 C 源码中,表的最大字段数量限制体现在 MAX_FIELDS 宏定义中。这个宏定义了表中可以拥有的最大字段数量。 代码中的体现 在 mysql_prepare_create_table 函数中,有以下代码段检查表的字段数量是否超过最大限制: cpp if (alt…...

胜任力冰山模型:深入探索职业能力的多维结构
目录 1、序言 2、什么是胜任力? 3、任职资格和胜任力的区别 4、胜任力冰山模型:职场能力的多维展现 4.1、冰山水面上的部分 4.2、冰山水面下的部分 4.3、深层的个人特质与价值观 5、如何平衡任职资格与胜任能力 6、结语 1、序言 在快速发展的I…...

什么是三层交换技术?与二层有什么区别?
什么是三层交换技术?让你的网络飞起来! 一. 什么是三层交换技术?二. 工作原理三. 优点四. 应用场景五. 总结 前言 点个免费的赞和关注,有错误的地方请指出,看个人主页有惊喜。 作者:神的孩子都在歌唱 大家好…...

Linux+Docer 容器化部署之 Shell 语法入门篇 【Shell 替代】
🎀🎀Shell语法入门篇 系列篇 🎀🎀 LinuxDocer 容器化部署之 Shell 语法入门篇 【准备阶段】LinuxDocer 容器化部署之 Shell 语法入门篇 【Shell变量】LinuxDocer 容器化部署之 Shell 语法入门篇 【Shell数组与函数】LinuxDocer 容…...
DeepSeek LLM(初代)阅读报告
概况 这个是deepseek发布的第一版模型对应的技术报告,模型发布于23年11月,本报告发布于24年1月。 模型有7B和67B两个版本。 虽然本报告中还没有用上后面V2/V3和R1中的关键技术例如MLA、MTP、GRPO,但是报告中已经指明了MoE、强化学习等未来…...
JAVA异步的TCP 通讯-服务端
一、服务端代码示例 import java.io.IOException; import java.net.InetSocketAddress; import java.nio.ByteBuffer; import java.nio.channels.AsynchronousServerSocketChannel; import java.nio.channels.AsynchronousSocketChannel; import java.nio.channels.Completion…...

高效协同,Tita 助力项目管理场景革新
在当今快节奏、高度竞争的商业环境中,企业面临着前所未有的挑战:如何在有限资源下迅速响应市场变化,确保多个项目的高效执行并达成战略目标?答案就在于优化项目集程管理。而在这个过程中,Tita项目管理产品以其独特的优…...
【AIGC魔童】DeepSeek v3提示词Prompt书写技巧
【AIGC魔童】DeepSeek v3提示词Prompt书写技巧 (1)基础通用公式(适用80%场景)(2)问题解决公式(决策支持)(3)创意生成公式(4)学习提升公…...
Vue | 透传 Attributes(非 prop 的 attribute )
文章目录 引言I Attribute 继承II 禁用 attribute 继承禁用 attribute 继承的常见场景通过将 inheritAttrs 选项设置为 false从 3.3 开始可在 `<script setup>` 中使用defineOptions例子引言 “透传 attribute”指的是传递给一个组件,却没有被该组件声明为 props 或 emi…...

启明星辰发布MAF大模型应用防火墙产品,提升DeepSeek类企业用户安全
2月7日,启明星辰面向DeepSeek等企业级大模型业务服务者提供的安全防护产品——天清MAF(Model Application Firewall)大模型应用防火墙产品正式发布。 一个新赛道将被开启…… DeepSeek的低成本引爆赛道规模 随着DeepSeek成为当前最热的现象级…...

Vuex 解析:从 Vue 2 到 Vue 3 的演变与最佳实践
Vuex 是 Vue.js 中的状态管理模式,广泛应用于 Vue 2 和 Vue 3 中,其内部实现存在一些差异。 1. 什么是 Vuex ? Vuex 是 Vue.js 官方提供的状态管理库,用于集中管理应用的所有组件的状态。主要是通过一种集中化的方式来管理共享状…...

一文解释nn、nn.Module与nn.functional的用法与区别
🌈 个人主页:十二月的猫-CSDN博客 🔥 系列专栏: 🏀零基础入门PyTorch框架_十二月的猫的博客-CSDN博客 💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 目录 …...

Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...

PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...