PyTorch torch.unbind、torch.split 和 torch.chunk函数介绍
pytorch中 torch.unbind、torch.split 和 torch.chunk等函数可用于张量的拆分操作。
1. torch.unbind
功能说明:
torch.unbind 沿指定的维度将张量“解包”为多个张量,返回一个元组。解包后被操作的那个维度会消失,每个输出张量的维度数会比原张量少 1。
函数签名:
torch.unbind(input, dim=0)
input: 待解包的张量。dim: 指定沿哪个维度解包。
多维张量示例:
import torch# 创建一个形状为 (2, 3, 4) 的张量
x = torch.arange(24).reshape(2, 3, 4)
print("原始张量 x:\n", x)
print("x.shape:", x.shape) # torch.Size([2, 3, 4])# 沿第 0 维解包
slices0 = torch.unbind(x, dim=0)
print("\n沿 dim=0 解包:")
for i, t in enumerate(slices0):print(f"slice {i} shape: {t.shape}")# 每个张量形状为 (3, 4)# 沿第 1 维解包
slices1 = torch.unbind(x, dim=1)
print("\n沿 dim=1 解包:")
for i, t in enumerate(slices1):print(f"slice {i} shape: {t.shape}")# 每个张量形状为 (2, 4)
2. torch.split
功能说明:
torch.split 根据给定的大小或尺寸列表,将张量沿指定维度切分成若干块。
- 如果传入一个整数,则每块的大小为该整数,最后一块可能会小于这个整数。
- 如果传入一个尺寸列表,则按列表中指定的尺寸进行切分。
函数签名:
torch.split(tensor, split_size_or_sections, dim=0)
tensor: 待分割的张量。split_size_or_sections: 整数或尺寸列表,指定每块的大小。dim: 指定沿哪个维度进行切分。
多维张量示例:
import torch# 创建一个形状为 (2, 5, 4) 的张量
x = torch.arange(40).reshape(2, 5, 4)
print("原始张量 x:\n", x)
print("x.shape:", x.shape) # torch.Size([2, 5, 4])# 按照固定大小进行切分:沿第 1 维,每块大小为 2
splits_fixed = torch.split(x, 2, dim=1)
print("\n沿 dim=1 按固定大小 2 切分:")
for i, t in enumerate(splits_fixed):print(f"chunk {i} shape: {t.shape}")# 输出块的形状可能为 (2, 2, 4), (2, 2, 4) 和最后一块 (2, 1, 4)# 按照指定尺寸列表进行切分:沿第 1 维,分块尺寸为 [1, 2, 2]
splits_list = torch.split(x, [1, 2, 2], dim=1)
print("\n沿 dim=1 按尺寸列表 [1, 2, 2] 切分:")
for i, t in enumerate(splits_list):print(f"chunk {i} shape: {t.shape}")# 分别输出形状 (2, 1, 4), (2, 2, 4), (2, 2, 4)
3. torch.chunk
功能说明:
torch.chunk 将张量沿指定维度平均分成指定数量的块。如果张量在该维度上的长度不能被块数整除,则前面的块会比后面块多一个元素(块的尺寸差别最多为 1)。
函数签名:
torch.chunk(tensor, chunks, dim=0)
tensor: 待分割的张量。chunks: 指定分成几块。dim: 指定沿哪个维度进行分块。
多维张量示例:
对比总结
| 函数 | 分割方式 | 返回结果形式 | 适用场景 |
|---|---|---|---|
| torch.unbind | 沿指定维度将张量完全解包,每个输出不含该维度 | 元组,输出张量数 = 该维度的长度 | 需要逐个处理某一维度上的切片,且希望移除该维度时使用。 |
| torch.split | 按照指定大小或尺寸列表切分张量 | 元组或列表 | 需要按固定大小或自定义尺寸列表切分张量,最后一块可能不均匀。 |
| torch.chunk | 将张量均匀分成指定数量的块 | 元组或列表 | 希望将张量平均分成若干块,块数固定,自动处理无法整除的情况。 |
注意:
- 当处理多维张量时,选择沿哪一维进行分割非常重要;
torch.unbind会移除分割的那个维度,而torch.split和torch.chunk则保持原始维度,只是该维度上的大小发生变化。
通过这些示例代码和说明,你可以根据具体需求选择合适的函数来分割多维张量。
相关文章:
PyTorch torch.unbind、torch.split 和 torch.chunk函数介绍
pytorch中 torch.unbind、torch.split 和 torch.chunk等函数可用于张量的拆分操作。 1. torch.unbind 功能说明: torch.unbind 沿指定的维度将张量“解包”为多个张量,返回一个元组。解包后被操作的那个维度会消失,每个输出张量的维度数会比…...
【愚公系列】《循序渐进Vue.js 3.x前端开发实践》061-Vue Router的动态路由
标题详情作者简介愚公搬代码头衔华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主&…...
杭州某小厂面试
问的都是基础知识,主要是三个部分:计网,数据库,java。计网答得挺好,数据答得一般,Java答得一坨。 目录 1.TCP/IP协议的5层模型 2.3次握手和4次挥手 3.操作系统中的进程和线程的区别 4.lunix top 命令看…...
C基础寒假练习(8)
一、终端输入10个学生成绩,使用冒泡排序对学生成绩从低到高排序 #include <stdio.h> int main(int argc, const char *argv[]) {int arr[10]; // 定义一个长度为10的整型数组,用于存储学生成绩int len sizeof(arr) / sizeof(arr[0]); // 计算数组…...
设计模式 ->模板方法模式(Template Method Pattern)
模板方法模式 模板方法模式是一种行为设计模式,它在一个方法中定义一个操作的算法骨架,而将一些步骤延迟到子类中实现。它允许子类在不改变算法结构的情况下重新定义算法中的某些步骤 特点 算法骨架: 在基类中定义算法的框架延迟实现&…...
Redis存储⑤Redis五大数据类型之 List 和 Set。
目录 1. List 列表 1.1 List 列表常见命令 1.2 阻塞版本命令 1.3 List命令总结和内部编码 1.4 List典型使用场景 1.4.1 消息队列 1.4.2 分频道的消息队列 1.4.3 微博 Timeline 2. Set 集合 2.1 Set 集合常见命令 2.2 Set 集合间命令 2.3 Set命令小结和内部编码 2.…...
MySQL开窗函数种类和使用总结
在 MySQL 中,开窗函数(Window Functions) 是一种强大的功能,能够在数据分析和聚合时提供灵活的方式。开窗函数在 MySQL 8.0 及以上版本 中引入,可以基于数据的某个分组(窗口)来执行计算…...
DeepSeek——DeepSeek模型部署实战
摘要 文章主要介绍了DeepSeek大模型的本地部署方法、使用方式以及API接入相关内容。首先指出可通过下载Ollama来部署DeepSeek-R1模型,并给出了模型不同参数版本及存储信息。接着说明了如何通过Chatbox官网下载并接入DeepSeek API,以及如何接入本地部署模…...
zsh: command not found: pip
当你在终端输入 pip install ipykernel 时出现 zsh: command not found: pip 错误,这表明系统无法找到 pip 命令,下面为你详细分析可能的原因以及对应的解决办法。 可能的原因 Python 未安装:pip 是 Python 的包管理工具,若你的…...
机器学习数学基础:16.方程组
一、方程组基础概念 (一)定义 方程组是由若干个包含未知数的方程组合而成的集合。例如, { 3 x 2 y − z 7 2 x − y 3 z 5 x 4 y − 2 z 3 \begin{cases}3x 2y - z 7\\2x - y 3z 5\\x 4y - 2z 3\end{cases} ⎩ ⎨ ⎧3x2y−z7…...
即梦(Dreamina)技术浅析(四):生成对抗网络
即梦(Dreamina) 的生成对抗网络(GAN,Generative Adversarial Network)技术是其核心功能之一,用于生成高质量的图像、文本和视频内容。GAN 是一种深度学习模型,由生成器(Generator)和判别器(Discriminator)两部分组成,通过对抗训练的方式不断提升生成内容的质量。 …...
2025年软件测试五大趋势:AI、API安全、云测试等前沿实践
随着软件开发的不断进步,测试方法也在演变。企业需要紧跟新兴趋势,以提升软件质量、提高测试效率,并确保安全性,在竞争激烈的技术环境中保持领先地位。本文将深入探讨2025年最值得关注的五大软件测试趋势。 Parasoft下载https://…...
Vue混入(Mixins)与插件开发深度解析
Vue混入(Mixins)与插件开发深度解析 Vue混入(Mixins)与插件开发深度解析1. Vue混入(Mixins)核心概念1.1 什么是混入1.1.1 本质定义与技术定位1.1.2 混入与相关概念的对比1.1.3 适用场景分析1.1.4 设计哲学与…...
【C++】C++11
目录 C11简介 统一的列表初始化 {}初始化 std::initializer_list 声明 auto decltype nullptr 范围for循环 智能指针 STL中的一些变化 右值引用和移动语义 左值引用和右值引用 右值引用的意义 完美转发 lambda表达式 新的类功能 可变参数模版 包装器 func…...
k8sollama部署deepseek-R1模型,内网无坑
这是目录 linux下载ollama模型文件下载到本地,打包迁移到k8s等无网络环境使用下载打包ollama镜像非k8s环境使用k8s部署访问方式非ollama运行deepseek模型linux下载ollama 下载后可存放其他服务器 curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linu…...
mysql8 C++源码中创建表函数,表字段最大数量限制,表行最大存储限制
在 MySQL 8 的 C 源码中,表的最大字段数量限制体现在 MAX_FIELDS 宏定义中。这个宏定义了表中可以拥有的最大字段数量。 代码中的体现 在 mysql_prepare_create_table 函数中,有以下代码段检查表的字段数量是否超过最大限制: cpp if (alt…...
胜任力冰山模型:深入探索职业能力的多维结构
目录 1、序言 2、什么是胜任力? 3、任职资格和胜任力的区别 4、胜任力冰山模型:职场能力的多维展现 4.1、冰山水面上的部分 4.2、冰山水面下的部分 4.3、深层的个人特质与价值观 5、如何平衡任职资格与胜任能力 6、结语 1、序言 在快速发展的I…...
什么是三层交换技术?与二层有什么区别?
什么是三层交换技术?让你的网络飞起来! 一. 什么是三层交换技术?二. 工作原理三. 优点四. 应用场景五. 总结 前言 点个免费的赞和关注,有错误的地方请指出,看个人主页有惊喜。 作者:神的孩子都在歌唱 大家好…...
Linux+Docer 容器化部署之 Shell 语法入门篇 【Shell 替代】
🎀🎀Shell语法入门篇 系列篇 🎀🎀 LinuxDocer 容器化部署之 Shell 语法入门篇 【准备阶段】LinuxDocer 容器化部署之 Shell 语法入门篇 【Shell变量】LinuxDocer 容器化部署之 Shell 语法入门篇 【Shell数组与函数】LinuxDocer 容…...
DeepSeek LLM(初代)阅读报告
概况 这个是deepseek发布的第一版模型对应的技术报告,模型发布于23年11月,本报告发布于24年1月。 模型有7B和67B两个版本。 虽然本报告中还没有用上后面V2/V3和R1中的关键技术例如MLA、MTP、GRPO,但是报告中已经指明了MoE、强化学习等未来…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
