保姆级教程--DeepSeek部署
以DeepSeek-R1或其他类似模型为例,涵盖环境配置、代码部署和运行测试的全流程:
准备工作
1. 注册 Cloud Studio
- 访问 [Cloud Studio 官网](https://cloudstudio.net/),使用腾讯云账号登录。
- 完成实名认证(如需长期使用)。
2. 创建工作空间
进入控制台,点击「新建工作空间」。
选择「Python」模板,配置资源:
运行环境:推荐选择 Ubuntu 18.04+(预装Python 3.8)。
资源规格:若需GPU加速,选择「GPU 加速型」;否则选「基础型」。
存储:至少分配 20GB 存储(模型文件通常较大)。
步骤 1:配置开发环境
1. 安装依赖库
打开 Cloud Studio 的终端(Terminal),依次执行以下命令:
```bash
# 更新系统包
sudo apt-get update
# 安装 Python 依赖
sudo apt-get install -y python3-pip python3-dev
# 安装 PyTorch(根据CUDA版本选择,若无GPU则用CPU版)
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117
# 安装 DeepSeek 所需依赖(假设项目需要)
pip3 install transformers datasets accelerate sentencepiece
```
2. 验证 GPU 可用性(如选择GPU环境)
```bash
nvidia-smi # 查看GPU信息
python3 -c "import torch; print(torch.cuda.is_available())" # 输出应为 True
```
步骤 2:部署 DeepSeek 模型
1. 克隆代码仓库
假设 DeepSeek 代码托管在 GitHub,例如官方仓库 `deepseek-ai/DeepSeek-R1`:
```bash
git clone https://github.com/deepseek-ai/DeepSeek-R1.git
cd DeepSeek-R1
```
若代码需权限访问,使用 SSH Key 或 Personal Access Token(需提前配置)。
2. 下载模型权重
从 Hugging Face 或官方渠道下载预训练模型(如 `deepseek-r1-base`):
```bash
# 示例:使用 huggingface-cli 下载
pip install huggingface_hub
huggingface-cli download deepseek-ai/deepseek-r1-base --local-dir ./model
```
3. 配置模型路径
修改代码中的模型加载路径(如 `config.json` 或 `inference.py`):
```python
# 示例代码片段
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained("./model")
tokenizer = AutoTokenizer.from_pretrained("./model")
```
步骤 3:运行推理测试
1. 编写测试脚本
- 在项目根目录创建 `demo.py`,添加示例推理代码:
```python
from transformers import pipeline
# 加载模型
generator = pipeline('text-generation', model='./model')
# 示例输入
prompt = "中国的首都是"
result = generator(prompt, max_length=50, num_return_sequences=1)
print(result[0]['generated_text'])
```
2. 执行推理
```bash
python3 demo.py
```
预期输出:生成与输入相关的文本,例如 `中国的首都是北京,位于华北平原...`。
步骤 4:部署为 API 服务(可选)
1. 安装 FastAPI 和 Uvicorn
```bash
pip install fastapi uvicorn
```
2. 创建 API 文件 `api.py`
```python
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import pipeline
app = FastAPI()
generator = pipeline('text-generation', model='./model')
class RequestData(BaseModel):
prompt: str
max_length: int = 50
@app.post("/generate")
async def generate_text(data: RequestData):
result = generator(data.prompt, max_length=data.max_length)
return {"result": result[0]['generated_text']}
```
3. 启动服务
```bash
uvicorn api:app --host 0.0.0.0 --port 8080
```
4. 访问 API
在 Cloud Studio 的「端口」选项卡中,将端口 `8080` 设置为公开访问。
通过生成的临时 URL(如 `https://xxxx.cloudstudio.net`)调用 API:
```bash
curl -X POST "https://xxxx.cloudstudio.net/generate" \
-H "Content-Type: application/json" \
-d '{"prompt": "人工智能的未来是"}'
```
常见问题解决
1. 依赖冲突
使用虚拟环境隔离依赖:
```bash
pip install virtualenv
virtualenv venv
source venv/bin/activate
```
2. 模型下载失败
替换 Hugging Face 镜像源:
```bash
export HF_ENDPOINT=https://hf-mirror.com
huggingface-cli download ...
```
3. 显存不足(GPU环境)
- 减少批量大小(`batch_size`)或启用梯度裁剪。
通过以上步骤,成功在 Cloud Studio 上部署了 DeepSeek 模型,并可通过 API 提供服务。若需长期运行,建议绑定自定义域名并配置 HTTPS。
相关文章:
保姆级教程--DeepSeek部署
以DeepSeek-R1或其他类似模型为例,涵盖环境配置、代码部署和运行测试的全流程: 准备工作 1. 注册 Cloud Studio - 访问 [Cloud Studio 官网](https://cloudstudio.net/),使用腾讯云账号登录。 - 完成实名认证(如需长期使用…...
机器学习之心的创作纪念日
机缘 今天,是我成为创作者的第1460天。 在这段时间里,获得了很大的成长。 虽然日常忙碌但还在坚持创作、初心还在。 日常 创作已经成为我生活的一部分,尤其是在我的工作中,创作是不可或缺的,创作都是核心能力之一。…...
VeryReport和FastReport两款报表软件深度分析对比
在当今数据驱动的商业环境中,报表软件已经成为企业管理和数据分析的重要工具。无论是中小型企业还是大型企业,都需要依赖高效的报表工具来快速生成、分析和展示数据。市面上有许多报表工具,其中VeryReport和FastReport是两款备受关注的报表软…...
libtorch的c++,加载*.pth
一、转换模型为TorchScript 前提:python只保存了参数,没存结构 要在C中使用libtorch(PyTorch的C接口),读取和加载通过torch.save保存的模型( torch.save(pdn.state_dict()这种方式,只保存了…...

去除 RequestTemplate 对象中的指定请求头
目录 目标实现获取 RequestTemplate 对象去除请求头 目标 去除 RequestTemplate 对象中的指定请求头,如 Authorization 等。 实现 获取 RequestTemplate 对象 获取 RequestTemplate 对象的方式有很多种,如 通过 feign 虚拟客户端配置器: …...

b s架构 网络安全 网络安全架构分析
目录 文章目录 目录网络安全逻辑架构 微分段(Micro-segmentation)防火墙即服务(Firewall asa Service ,FWaaS)安全网络网关(Secure web gateway)净化域名系统(Sanitized Domain Na…...

【DeepSeek论文精读】2. DeepSeek LLM:以长期主义扩展开源语言模型
欢迎关注[【AIGC论文精读】](https://blog.csdn.net/youcans/category_12321605.html)原创作品 【DeepSeek论文精读】1. 从 DeepSeek LLM 到 DeepSeek R1 【DeepSeek论文精读】2. DeepSeek LLM:以长期主义扩展开源语言模型 【DeepSeek论文精读】3. DeepS…...
Spring Boot和SpringMVC的关系
Spring Boot和SpringMVC都是Spring框架的一部分,但它们的作用和使用方式有所不同。为了更好地理解它们的关系,我们可以从以下几个方面进行详细说明: 1. SpringBoot的作用 SpringBoot是一个开源框架,它的目的是简化Spring应用程序…...

java基础4(黑马)
一、方法 1.定义 方法:是一种语法结构,它可以把一段代码封装成一个功能,以便重复使用。 方法的完整格式: package cn.chang.define;public class MethodDemo1 {public static void main(String[] args) {// 目标:掌…...

nodejs - vue 视频切片上传,本地正常,线上环境导致磁盘爆满bug
nodejs 视频切片上传,本地正常,线上环境导致磁盘爆满bug 原因: 然后在每隔一分钟执行du -sh ls ,发现文件变得越来越大,即文件下的mp4文件越来越大 最后导致磁盘直接爆满 排查原因 1、尝试将m3u8文件夹下的所有视…...
注意力机制(Attention Mechanism)和Transformer模型的区别与联系
注意力机制(Attention Mechanism) 和 Transformer 模型 是深度学习领域中的两个重要概念,虽然它们紧密相关,但有着明显的区别。下面我们将从 定义、作用、结构 和 应用 等多个维度来分析这两者的区别与联系。 1. 定义 注意力机制(Attention Mechanism): 注意力机制是一…...

C++,设计模式,【单例模式】
文章目录 一、模式定义与核心价值二、模式结构解析三、关键实现技术演进1. 基础版(非线程安全)2. 线程安全版(双重检查锁)3. 现代C++实现(C++11起)四、实战案例:全局日志管理器五、模式优缺点深度分析✅ 核心优势⚠️ 潜在缺陷六、典型应用场景七、高级实现技巧1. 模板化…...

C++:类和对象初识
C:类和对象初识 前言类的引入与定义引入定义类的两种定义方法1. 声明和定义全部放在类体中2. 声明和定义分离式 类的成员变量命名规则 类的访问限定符及封装访问限定符封装 类的作用域与实例化类的作用域类实例化实例化方式: 类对象模型类对象的大小存储…...

官网下载Redis指南
1.访问官网 https://redis.io/downloads/#stack 2.点击redis图标 拉到下面点击download 在新页面拉到最下面,点击install from source 找到需要的大版本后,点击releases page 最后点击下载需要的版本号即可...

活动预告 |【Part1】 Azure 在线技术公开课:迁移和保护 Windows Server 和 SQL Server 工作负载
课程介绍 通过 Microsoft Learn 免费参加 Microsoft Azure 在线技术公开课,掌握创造新机遇所需的技能,加快对 Microsoft 云技术的了解。参加我们举办的“迁移和保护 Windows Server 和 SQL Server 工作负载”活动,了解 Azure 如何为将工作负…...

【Linux系统编程】五、进程创建 -- fork()
文章目录 前言Ⅰ. 重温fork函数一、fork()的概念二、如何理解fork()有两个返回值 Ⅱ.fork的常规用法Ⅲ. fork调用失败的原因Ⅳ. 写时拷贝为什么存在写时拷贝❓❓❓ 前言 现阶段我们知道进程创建有如下两种方式,其实包括在以后的学习中这两种方式也是最常见的&#…...
深入解析 STM32 GPIO:结构、配置与应用实践
理解 GPIO 的工作原理和配置方法是掌握 STM32 开发的基础,后续的外设(如定时器、ADC、通信接口)都依赖于 GPIO 的正确配置。 目录 一、GPIO 的基本概念 二、GPIO 的主要功能 三、GPIO 的内部结构 四、GPIO 的工作模式 1. 输入模式 2. 输出模式 3. 复用功能模式 4. 模…...

深入探究 C++17 std::is_invocable
文章目录 一、引言二、std::is_invocable 概述代码示例输出结果 三、std::is_invocable 的工作原理简化实现示例 四、std::is_invocable 的相关变体1. std::is_invocable_r2. std::is_nothrow_invocable 和 std::is_nothrow_invocable_r 五、使用场景1. 模板元编程2. 泛型算法 …...
Vmware网络模式
一、Vmware虚拟网络 Vmware共支持创建20个虚拟网络,相当于现实生活的交换机,名称vmnet0-vmnet19 没创建一个虚拟网络。对应在物理机会自动生成相应的虚拟网卡 该虚拟网卡用于和对应的虚拟网络中的虚拟机通信 二、虚拟网络的工作模式 1、nat模式 …...

神经辐射场(NeRF):从2D图像到3D场景的革命性重建
神经辐射场(NeRF):从2D图像到3D场景的革命性重建 引言 在计算机视觉和图形学领域,如何从有限的2D图像中高效且准确地重建真实的3D场景,一直是一个重要的研究方向。传统的3D重建方法,如多视角几何、点云重建…...

网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...

idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...

ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...

热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁
赛门铁克威胁猎手团队最新报告披露,数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据,严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能,但SEMR…...

解析“道作为序位生成器”的核心原理
解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制,重点解析"道作为序位生成器"的核心原理与实现框架: 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...
ffmpeg(三):处理原始数据命令
FFmpeg 可以直接处理原始音频和视频数据(Raw PCM、YUV 等),常见场景包括: 将原始 YUV 图像编码为 H.264 视频将 PCM 音频编码为 AAC 或 MP3对原始音视频数据进行封装(如封装为 MP4、TS) 处理原始 YUV 视频…...
Linux信号保存与处理机制详解
Linux信号的保存与处理涉及多个关键机制,以下是详细的总结: 1. 信号的保存 进程描述符(task_struct):每个进程的PCB中包含信号相关信息。 pending信号集:记录已到达但未处理的信号(未决信号&a…...

[C++错误经验]case语句跳过变量初始化
标题:[C错误经验]case语句跳过变量初始化 水墨不写bug 文章目录 一、错误信息复现二、错误分析三、解决方法 一、错误信息复现 write.cc:80:14: error: jump to case label80 | case 2:| ^ write.cc:76:20: note: crosses initialization…...