当前位置: 首页 > news >正文

人工智能D* Lite 算法-动态障碍物处理、多步预测和启发式函数优化

在智能驾驶领域,D* Lite 算法是一种高效的动态路径规划算法,适用于处理环境变化时的路径重规划问题。以下将为你展示 D* Lite 算法的高级用法,包含动态障碍物处理、多步预测和启发式函数优化等方面的代码实现。

代码实现

import heapq
import math# 地图类,用于管理地图信息和更新
class Map:def __init__(self, grid):self.grid = gridself.rows = len(grid)self.cols = len(grid[0])def get_neighbors(self, node):x, y = nodeneighbors = []for dx, dy in [(0, 1), (0, -1), (1, 0), (-1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]:new_x, new_y = x + dx, y + dyif 0 <= new_x < self.rows and 0 <= new_y < self.cols and self.grid[new_x][new_y] == 0:neighbors.append((new_x, new_y))return neighborsdef update_cell(self, x, y, new_value):self.grid[x][y] = new_valuedef is_obstacle(self, node):x, y = nodereturn self.grid[x][y] == 1# 节点类,用于存储节点信息
class Node:def __init__(self, x, y):self.x = xself.y = yself.g = float('inf')self.rhs = float('inf')self.key = [float('inf'), float('inf')]def __lt__(self, other):return self.key < other.key# 优化的启发式函数:考虑对角线移动的欧几里得距离
def heuristic(a, b):dx = abs(a[0] - b[0])dy = abs(a[1] - b[1])return math.sqrt(dx**2 + dy**2)# 计算节点的键值
def calculate_key(node, s_start, k_m):node.key = [min(node.g, node.rhs) + heuristic((node.x, node.y), s_start) + k_m,min(node.g, node.rhs)]return node# 初始化 D* Lite 算法
def initialize(s_start, s_goal):U = []nodes = {}for i in range(map_obj.rows):for j in range(map_obj.cols):node = Node(i, j)nodes[(i, j)] = nodes_goal_node = nodes[s_goal]s_goal_node.rhs = 0s_goal_node = calculate_key(s_goal_node, s_start, 0)heapq.heappush(U, s_goal_node)return U, nodes# 更新节点的 rhs 值
def update_vertex(U, node, s_start, k_m):if node.g != node.rhs:node = calculate_key(node, s_start, k_m)for i, n in enumerate(U):if n.x == node.x and n.y == node.y:U[i] = nodeheapq.heapify(U)breakelse:heapq.heappush(U, node)else:for i, n in enumerate(U):if n.x == node.x and n.y == node.y:U.pop(i)heapq.heapify(U)break# 计算最短路径
def compute_shortest_path(U, s_start, nodes, k_m):while U and (U[0].key < calculate_key(nodes[s_start], s_start, k_m) ornodes[s_start].rhs > nodes[s_start].g):u = heapq.heappop(U)if u.g > u.rhs:u.g = u.rhselse:u.g = float('inf')update_vertex(U, u, s_start, k_m)for neighbor in map_obj.get_neighbors((u.x, u.y)):neighbor_node = nodes[neighbor]if neighbor != s_start:cost = 1if abs(u.x - neighbor[0]) + abs(u.y - neighbor[1]) == 2:cost = math.sqrt(2)  # 对角线移动代价neighbor_node.rhs = min(neighbor_node.rhs,u.g + cost)update_vertex(U, neighbor_node, s_start, k_m)# 动态障碍物处理和多步预测
def handle_dynamic_obstacles(U, nodes, s_start, s_goal, k_m, dynamic_obstacles):for obstacle in dynamic_obstacles:obstacle_node = nodes[obstacle]map_obj.update_cell(obstacle[0], obstacle[1], 1)for neighbor in map_obj.get_neighbors(obstacle):neighbor_node = nodes[neighbor]neighbor_node.rhs = float('inf')update_vertex(U, neighbor_node, s_start, k_m)compute_shortest_path(U, s_start, nodes, k_m)# 路径规划函数
def d_star_lite(s_start, s_goal, dynamic_obstacles=[]):U, nodes = initialize(s_start, s_goal)k_m = 0compute_shortest_path(U, s_start, nodes, k_m)path = []current = s_startwhile current != s_goal:path.append(current)neighbors = map_obj.get_neighbors(current)min_rhs = float('inf')next_node = Nonefor neighbor in neighbors:neighbor_node = nodes[neighbor]if neighbor_node.rhs < min_rhs:min_rhs = neighbor_node.rhsnext_node = neighborif next_node is None:print("未找到可行路径!")return []current = next_nodepath.append(s_goal)# 处理动态障碍物if dynamic_obstacles:handle_dynamic_obstacles(U, nodes, s_start, s_goal, k_m, dynamic_obstacles)path = []current = s_startwhile current != s_goal:path.append(current)neighbors = map_obj.get_neighbors(current)min_rhs = float('inf')next_node = Nonefor neighbor in neighbors:neighbor_node = nodes[neighbor]if neighbor_node.rhs < min_rhs:min_rhs = neighbor_node.rhsnext_node = neighborif next_node is None:print("未找到可行路径!")return []current = next_nodepath.append(s_goal)return path# 示例地图
map_grid = [[0, 0, 0, 0, 0],[0, 1, 1, 0, 0],[0, 0, 0, 0, 0],[0, 0, 1, 1, 0],[0, 0, 0, 0, 0]
]
map_obj = Map(map_grid)# 起点和终点
s_start = (0, 0)
s_goal = (4, 4)# 初始路径规划
path = d_star_lite(s_start, s_goal)
if path:print("初始规划的路径:", path)# 模拟动态障碍物出现
dynamic_obstacles = [(2, 2)]
path = d_star_lite(s_start, s_goal, dynamic_obstacles)
if path:print("出现动态障碍物后重新规划的路径:", path)

代码解释

1. 地图类(Map
  • get_neighbors:不仅考虑上下左右移动,还考虑了对角线移动,扩大了节点的搜索范围。
  • is_obstacle:判断节点是否为障碍物。
2. 节点类(Node
  • 存储节点的坐标、g 值(从起点到该节点的实际代价)、rhs 值(到该节点的最短路径的估计代价)和键值 key
3. 启发式函数(heuristic
  • 采用考虑对角线移动的欧几里得距离作为启发式函数,更准确地估计节点到目标节点的代价。
4. D* Lite 算法核心函数
  • initialize:初始化算法,创建节点字典和优先队列 U,将目标节点加入队列。
  • calculate_key:计算节点的键值,用于优先队列的排序。
  • update_vertex:更新节点的 rhs 值,并根据情况更新优先队列。
  • compute_shortest_path:计算最短路径,不断更新节点的 grhs 值,直到找到最短路径或队列为空。
5. 动态障碍物处理和多步预测
  • handle_dynamic_obstacles:处理动态障碍物的出现,更新受影响节点的 rhs 值,并重新计算最短路径。
6. 路径规划函数(d_star_lite
  • 主路径规划函数,先进行初始路径规划,若存在动态障碍物,则调用 handle_dynamic_obstacles 重新规划路径。

注意事项

  • 代码中的动态障碍物处理是简单模拟,实际应用中需要结合传感器数据实时更新障碍物信息。
  • 启发式函数和移动代价的计算可以根据具体场景进行调整,以提高路径规划的效率和准确性。
  • 代码中未考虑车辆的运动学约束,实际智能驾驶中需要进一步考虑车辆的转弯半径、速度限制等因素。

相关文章:

人工智能D* Lite 算法-动态障碍物处理、多步预测和启发式函数优化

在智能驾驶领域&#xff0c;D* Lite 算法是一种高效的动态路径规划算法&#xff0c;适用于处理环境变化时的路径重规划问题。以下将为你展示 D* Lite 算法的高级用法&#xff0c;包含动态障碍物处理、多步预测和启发式函数优化等方面的代码实现。 代码实现 import heapq impo…...

MySQL 8版本认证问题

目录 问题&#xff1a; Public Key Retrieval is not allowed原因&#xff1a; mysql 8.0 调整身份认证机制解决方法&#xff08;三种&#xff09; 问题&#xff1a; Public Key Retrieval is not allowed 连接MySQL8数据库的时候&#xff0c;报错内容如下&#xff1a;“Publi…...

Android 开发APP中参数配置与读取总结

以使用MQTT配置的参数 MQTT_BROKER_UR 、MQTT_USER_NAME、 MQTT_PASSWORD为例&#xff0c;说明配置设置和读取应用 项目中使用系统参数&#xff08;如环境变量和gradle.properties文件中的属性&#xff09;在Gradle构建脚本中&#xff0c;以下是一个详细的操作文档资料&…...

Scala 语法入门

Scala语法入门 1. 定义变量2. 定义方法3. 闭包4. 声明字符串5. 声明数组6. 声明集合7. 异常处理 1. 定义变量 &#xff08;变量的类型在变量名之后等号之前声明&#xff09; 不可变变量(val) 类似于 Java 中的 final 变量&#xff0c;即一旦赋值后&#xff0c;其值不能再被改…...

python中的flask框架

Flask 是一个用Python编写的轻量级Web应用框架 基于WSGI和Jinja2模板引擎 被称为“微框架”&#xff0c;其核心功能简单&#xff0c;不捆绑数据库管理、表单验证等功能&#xff0c;而是通过扩展来增加其他功能 Flask提供最基本的功能&#xff0c;不强制使用特定工具或库 通…...

【redis】缓存设计规范

本文是 Redis 键值设计的 14 个核心规范与最佳实践&#xff0c;按重要程度分层说明&#xff1a; 一、通用数据类型选择 这里我们先给出常规的选择路径图。 以下是对每个步骤的分析&#xff1a; 是否需要排序&#xff1f;&#xff1a; zset&#xff08;有序集合&#xff09;用…...

归一化与伪彩:LabVIEW图像处理的区别

在LabVIEW的图像处理领域&#xff0c;归一化&#xff08;Normalization&#xff09;和伪彩&#xff08;Pseudo-coloring&#xff09;是两个不同的概念&#xff0c;虽然它们都涉及图像像素值的调整&#xff0c;但目的和实现方式截然不同。归一化用于调整像素值的范围&#xff0c…...

DeepSeek大模型本地部署实战

1. 下载并安装Ollama 打开浏览器&#xff1a;使用你常用的浏览器&#xff08;如Chrome、Firefox等&#xff09;访问Ollama的官方网站。无需特殊网络环境&#xff0c;直接搜索“Ollama”即可找到。 登录与下载&#xff1a;进入Ollama官网后&#xff0c;点击右上角的“Download…...

deepseek+kimi自动生成ppt

打开deepseek官网&#xff0c;输入详细的需求&#xff0c;让他生成个ppt 接着deepseek开始思考生成了 接着复制生成了的内容 打开kimi粘贴刚才deepseek生成的内容 可以一键生成啦&#xff0c;下载编辑使用吧...

集成SwanLab与HuggingFace TRL:跟踪与优化强化学习实验

文章目录 1. 引入SwanLabCallback2. 传入Trainer3. 完整案例代码4. GUI效果展示 TRL (Transformers Reinforcement Learning&#xff0c;用强化学习训练Transformers模型) 是一个领先的Python库&#xff0c;旨在通过监督微调&#xff08;SFT&#xff09;、近端策略优化&#xf…...

cefsharp131升级132测试(WinForms.NETCore)

一、升级&#xff08;Nuget&#xff09; 版本说明&#xff08;readme&#xff09;:最低.NET Core3.1 (NET5.0) Visual C 2019 Redist 二、试运行、兼容性测试 三、后记说明 支持H264版本推荐版本63,79,84,88,100,111,125&#xff08;支持h264和pdf预览&#xff09; 其他H264版…...

Gitee AI上线:开启免费DeepSeek模型新时代

Gitee Al上线&#xff0c;并宣布开启免费DeepSeek模型的时代&#xff0c;这是一个非常值得关注的消息&#xff0c;因 为它标志着国内在AI领域的一个重要发展。DeepSeek模型是由阿里巴巴达摩院开发的&#xff0c;旨 在提供强大的自然语言处理(NLP)能力。下面是一些关于这一事件…...

nginx常用命令及补充

在Linux环境下nginx常用命令如下&#xff1a; 1、查看nginx版本号命令 nginx -v 2、查找nginx配置文件路径已经检查配置文件是否正确 nginx -t 3、查找nginx安装目录 which nginx 4、查看nginx进程 ps -ef|grep nginx 5、进入到nginx的sbin目录后&#xff0c;执行一下…...

自动驾驶---聊聊传统规控和端到端

1 背景 在自动驾驶领域中&#xff0c;端到端模型的兴起确实对传统的规划控制方法&#xff08;笔者并不同意网上以Rule-Base称呼传统规控&#xff0c;传统的规控其实也使用了很多优化算法和博弈算法&#xff09;产生了挑战&#xff0c;但这就意味着传统规控方法就完全没有应用了…...

node.js + html + Sealos容器云 搭建简易多人实时聊天室demo 带源码

node.js html Sealos容器云 搭建简易多人实时聊天室demo 带源码 前言功能介绍&#xff08;demo演示&#xff09;sealos官网配置node.js 编写服务端代码前端ui 调用接口整体项目目录部署到服务器 前言 hello哦盆友们&#xff0c;这次我们来十几行代码做一个超简单的多人聊天…...

OpenFeign远程调用返回的是List<T>类型的数据

在使用 OpenFeign 进行远程调用时&#xff0c;如果接口返回的是 List 类型的数据&#xff0c;可以通过以下方式处理&#xff1a; 直接定义返回类型为List Feign 默认支持 JSON 序列化/反序列化&#xff0c;如果服务端返回的是 List的JSON格式数据&#xff0c;可以直接在 Feig…...

PCL 计算多边形的面积【2025最新版】

目录 一、算法原理1、概述2、主要函数3、函数源码二、代码实现三、结果展示博客长期更新,本文最近更新时间为:2025年1月17日。 一、算法原理 1、概述 根据给定的多边形的点云计算多边形的面积 A r e a = 1 2 ∑...

著名大模型评测榜单(不同评测方式)

在评估大语言模型的性能时&#xff0c;一种主流的途径就是选择不同的能力维度并且构建对应的评测任务&#xff0c;进而使用这些能力维度的评测任务对模型的性能进行测试与对比。由大型机构或者研究院所排出榜单。 评测指标 不同评测任务有不同的评指标&#xff0c;衡量模型的…...

国内知名Deepseek培训师培训讲师唐兴通老师讲授AI人工智能大模型实践应用

课程名称 《Deepseek人工智能大模型实践应用》 课程目标 全面了解Deepseek人工智能大模型的技术原理、功能特点及应用场景。 熟练掌握Deepseek大模型的提示词工程技巧&#xff0c;能够编写高质量的提示词。 掌握Deepseek大模型在办公、营销等领域的应用方法&#xff0c;提升…...

【AIGC】冷启动数据与多阶段训练在 DeepSeek 中的作用

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: AIGC | ChatGPT 文章目录 &#x1f4af;前言&#x1f4af;冷启动数据的作用冷启动数据设计 &#x1f4af;多阶段训练的作用阶段 1&#xff1a;冷启动微调阶段 2&#xff1a;推理导向强化学习&#xff08;RL&#xff0…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...