当前位置: 首页 > news >正文

集成SwanLab与HuggingFace TRL:跟踪与优化强化学习实验

文章目录

    • 1. 引入SwanLabCallback
    • 2. 传入Trainer
    • 3. 完整案例代码
    • 4. GUI效果展示

TRL (Transformers Reinforcement Learning,用强化学习训练Transformers模型) 是一个领先的Python库,旨在通过监督微调(SFT)、近端策略优化(PPO)和直接偏好优化(DPO)等先进技术,对基础模型进行训练后优化。TRL 建立在 🤗 Transformers 生态系统之上,支持多种模型架构和模态,并且能够在各种硬件配置上进行扩展。

logo

你可以使用Trl快速进行模型训练,同时使用SwanLab进行实验跟踪与可视化。

Demo

1. 引入SwanLabCallback

from swanlab.integration.transformers import SwanLabCallback

SwanLabCallback是适配于Transformers的日志记录类。

SwanLabCallback可以定义的参数有:

  • project、experiment_name、description 等与 swanlab.init 效果一致的参数, 用于SwanLab项目的初始化。
  • 你也可以在外部通过swanlab.init创建项目,集成会将实验记录到你在外部创建的项目中。

2. 传入Trainer

from swanlab.integration.transformers import SwanLabCallback
from trl import SFTConfig, SFTTrainer...# 实例化SwanLabCallback
swanlab_callback = SwanLabCallback(project="trl-visualization")trainer = SFTTrainer(...# 传入callbacks参数callbacks=[swanlab_callback],
)trainer.train()

3. 完整案例代码

使用Qwen2.5-0.5B-Instruct模型,使用Capybara数据集进行SFT训练:

from trl import SFTConfig, SFTTrainer
from datasets import load_dataset
from swanlab.integration.transformers import SwanLabCallbackdataset = load_dataset("trl-lib/Capybara", split="train")swanlab_callback = SwanLabCallback(project="trl-visualization",experiment_name="Qwen2.5-0.5B-SFT",description="测试使用trl框架sft训练"
)training_args = SFTConfig(output_dir="Qwen/Qwen2.5-0.5B-SFT",per_device_train_batch_size=1,per_device_eval_batch_size=1,num_train_epochs=1,logging_steps=20,learning_rate=2e-5,)trainer = SFTTrainer(args=training_args,model="Qwen/Qwen2.5-0.5B-Instruct",train_dataset=dataset,callbacks=[swanlab_callback]
)trainer.train()

DPO、GRPO、PPO等同理,只需要将SwanLabCallback传入对应的Trainer即可。

4. GUI效果展示

超参数自动记录:

ig-hf-trl-gui-2

指标记录:

ig-hf-trl-gui-1

相关文章:

集成SwanLab与HuggingFace TRL:跟踪与优化强化学习实验

文章目录 1. 引入SwanLabCallback2. 传入Trainer3. 完整案例代码4. GUI效果展示 TRL (Transformers Reinforcement Learning,用强化学习训练Transformers模型) 是一个领先的Python库,旨在通过监督微调(SFT)、近端策略优化&#xf…...

cefsharp131升级132测试(WinForms.NETCore)

一、升级(Nuget) 版本说明(readme):最低.NET Core3.1 (NET5.0) Visual C 2019 Redist 二、试运行、兼容性测试 三、后记说明 支持H264版本推荐版本63,79,84,88,100,111,125(支持h264和pdf预览) 其他H264版…...

Gitee AI上线:开启免费DeepSeek模型新时代

Gitee Al上线,并宣布开启免费DeepSeek模型的时代,这是一个非常值得关注的消息,因 为它标志着国内在AI领域的一个重要发展。DeepSeek模型是由阿里巴巴达摩院开发的,旨 在提供强大的自然语言处理(NLP)能力。下面是一些关于这一事件…...

nginx常用命令及补充

在Linux环境下nginx常用命令如下: 1、查看nginx版本号命令 nginx -v 2、查找nginx配置文件路径已经检查配置文件是否正确 nginx -t 3、查找nginx安装目录 which nginx 4、查看nginx进程 ps -ef|grep nginx 5、进入到nginx的sbin目录后,执行一下…...

自动驾驶---聊聊传统规控和端到端

1 背景 在自动驾驶领域中,端到端模型的兴起确实对传统的规划控制方法(笔者并不同意网上以Rule-Base称呼传统规控,传统的规控其实也使用了很多优化算法和博弈算法)产生了挑战,但这就意味着传统规控方法就完全没有应用了…...

node.js + html + Sealos容器云 搭建简易多人实时聊天室demo 带源码

node.js html Sealos容器云 搭建简易多人实时聊天室demo 带源码 前言功能介绍(demo演示)sealos官网配置node.js 编写服务端代码前端ui 调用接口整体项目目录部署到服务器 前言 hello哦盆友们,这次我们来十几行代码做一个超简单的多人聊天…...

OpenFeign远程调用返回的是List<T>类型的数据

在使用 OpenFeign 进行远程调用时,如果接口返回的是 List 类型的数据,可以通过以下方式处理: 直接定义返回类型为List Feign 默认支持 JSON 序列化/反序列化,如果服务端返回的是 List的JSON格式数据,可以直接在 Feig…...

PCL 计算多边形的面积【2025最新版】

目录 一、算法原理1、概述2、主要函数3、函数源码二、代码实现三、结果展示博客长期更新,本文最近更新时间为:2025年1月17日。 一、算法原理 1、概述 根据给定的多边形的点云计算多边形的面积 A r e a = 1 2 ∑...

著名大模型评测榜单(不同评测方式)

在评估大语言模型的性能时,一种主流的途径就是选择不同的能力维度并且构建对应的评测任务,进而使用这些能力维度的评测任务对模型的性能进行测试与对比。由大型机构或者研究院所排出榜单。 评测指标 不同评测任务有不同的评指标,衡量模型的…...

国内知名Deepseek培训师培训讲师唐兴通老师讲授AI人工智能大模型实践应用

课程名称 《Deepseek人工智能大模型实践应用》 课程目标 全面了解Deepseek人工智能大模型的技术原理、功能特点及应用场景。 熟练掌握Deepseek大模型的提示词工程技巧,能够编写高质量的提示词。 掌握Deepseek大模型在办公、营销等领域的应用方法,提升…...

【AIGC】冷启动数据与多阶段训练在 DeepSeek 中的作用

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: AIGC | ChatGPT 文章目录 💯前言💯冷启动数据的作用冷启动数据设计 💯多阶段训练的作用阶段 1:冷启动微调阶段 2:推理导向强化学习(RL&#xff0…...

如何打造一个更友好的网站结构?

在SEO优化中,网站的结构往往被忽略,但它其实是决定谷歌爬虫抓取效率的关键因素之一。一个清晰、逻辑合理的网站结构,不仅能让用户更方便地找到他们需要的信息,还能提升搜索引擎的抓取效率 理想的网站结构应该像一棵树,…...

【ROS2】RViz2自定义面板插件(rviz_common::Panel)的详细步骤

【ROS】郭老二博文之:ROS目录 1、简述 RViz2 的插件基于 ROS2 的插件库(pluginlib)机制,通过动态加载共享库实现功能扩展。 注意:RViz2 使用 QT 作为 UI 框架,虽然 QT 也有插件机制,但是 RViz2 并没有使用QT的插件机制,而是通过 pluginlib 加载功能模块来实现。 2、…...

漏洞分析 Spring Framework路径遍历漏洞(CVE-2024-38816)

漏洞概述 VMware Spring Framework是美国威睿(VMware)公司的一套开源的Java、JavaEE应用程序框架。该框架可帮助开发人员构建高质量的应用。 近期,监测到Spring Framework在特定条件下,存在目录遍历漏洞(网宿评分&am…...

《手札·避坑篇》2025年传统制造业企业数字化转型指南

一、引言 在数字化浪潮的推动下,传统制造业企业正加速向智能化、数字化转型。开源软件技术与制造MES(制造执行系统)产品的结合,为企业提供了高效、灵活且低成本的转型路径。本指南旨在为传统制造业企业的信息化负责人提供一套完整的数字化转型方案,助力企业实现高效、智能…...

MySQL中DDL操作是否支持事务

MySQL中DDL不支持事务。 传统MySQL(5.7及以前版本): DDL操作不支持事务执行DDL操作时会隐式提交当前会话的事务无法回滚DDL操作 MySQL 8.0版本: 引入了原子DDL特性(Atomic DDL)DDL操作变为原子性的&…...

GWO优化决策树回归预测matlab

灰狼优化算法(Grey Wolf Optimizer,简称 GWO)是一种群智能优化算法,由澳大利亚格里菲斯大学的 Mirjalii 等人于 2014 年提出。该算法的设计灵感源自灰狼群体的捕食行为,核心思想是模仿灰狼社会的结构与行为模式。 在本…...

掌握Spring @SessionAttribute:跨请求数据共享的艺术

SessionAttribute注解在Spring中的作用,就像是一个“数据中转站”。 在Web应用中,我们经常需要在多个请求之间共享数据。比如,用户登录后,我们需要在多个页面或请求中保持用户的登录状态。这时,SessionAttribute注解就…...

python读取Excel表格内公式的值

背景:在做业务周报的时候,有一个Excel模板,表里面包含了一些公式,dataframe写入到Excel的时候,有公式的部分通过python读出来的结果是None,需要进行优化参考链接: 如何使用openpyxl读取Excel单元…...

第三十八章:阳江自驾之旅:挖蟹与品鲜

经历了惠州海边那趟温馨又欢乐的自驾之旅后,小冷和小颖心中对旅行的热情愈发高涨。闲暇时,两人总会坐在客厅里,翻看着旅行杂志,或是在网上搜索各地的美景,那些充满魅力的地方不断吸引着他们,也让他们对下一…...

ESP32读取DHT11温湿度数据

芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

【AI学习】三、AI算法中的向量

在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则&#xf…...

windows系统MySQL安装文档

概览:本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容,为学习者提供全面的操作指导。关键要点包括: 解压 :下载完成后解压压缩包,得到MySQL 8.…...