集成SwanLab与HuggingFace TRL:跟踪与优化强化学习实验
文章目录
- 1. 引入SwanLabCallback
- 2. 传入Trainer
- 3. 完整案例代码
- 4. GUI效果展示
TRL (Transformers Reinforcement Learning,用强化学习训练Transformers模型) 是一个领先的Python库,旨在通过监督微调(SFT)、近端策略优化(PPO)和直接偏好优化(DPO)等先进技术,对基础模型进行训练后优化。TRL 建立在 🤗 Transformers 生态系统之上,支持多种模型架构和模态,并且能够在各种硬件配置上进行扩展。

你可以使用Trl快速进行模型训练,同时使用SwanLab进行实验跟踪与可视化。
Demo
1. 引入SwanLabCallback
from swanlab.integration.transformers import SwanLabCallback
SwanLabCallback是适配于Transformers的日志记录类。
SwanLabCallback可以定义的参数有:
- project、experiment_name、description 等与 swanlab.init 效果一致的参数, 用于SwanLab项目的初始化。
- 你也可以在外部通过
swanlab.init创建项目,集成会将实验记录到你在外部创建的项目中。
2. 传入Trainer
from swanlab.integration.transformers import SwanLabCallback
from trl import SFTConfig, SFTTrainer...# 实例化SwanLabCallback
swanlab_callback = SwanLabCallback(project="trl-visualization")trainer = SFTTrainer(...# 传入callbacks参数callbacks=[swanlab_callback],
)trainer.train()
3. 完整案例代码
使用Qwen2.5-0.5B-Instruct模型,使用Capybara数据集进行SFT训练:
from trl import SFTConfig, SFTTrainer
from datasets import load_dataset
from swanlab.integration.transformers import SwanLabCallbackdataset = load_dataset("trl-lib/Capybara", split="train")swanlab_callback = SwanLabCallback(project="trl-visualization",experiment_name="Qwen2.5-0.5B-SFT",description="测试使用trl框架sft训练"
)training_args = SFTConfig(output_dir="Qwen/Qwen2.5-0.5B-SFT",per_device_train_batch_size=1,per_device_eval_batch_size=1,num_train_epochs=1,logging_steps=20,learning_rate=2e-5,)trainer = SFTTrainer(args=training_args,model="Qwen/Qwen2.5-0.5B-Instruct",train_dataset=dataset,callbacks=[swanlab_callback]
)trainer.train()
DPO、GRPO、PPO等同理,只需要将SwanLabCallback传入对应的Trainer即可。
4. GUI效果展示
超参数自动记录:

指标记录:

相关文章:
集成SwanLab与HuggingFace TRL:跟踪与优化强化学习实验
文章目录 1. 引入SwanLabCallback2. 传入Trainer3. 完整案例代码4. GUI效果展示 TRL (Transformers Reinforcement Learning,用强化学习训练Transformers模型) 是一个领先的Python库,旨在通过监督微调(SFT)、近端策略优化…...
cefsharp131升级132测试(WinForms.NETCore)
一、升级(Nuget) 版本说明(readme):最低.NET Core3.1 (NET5.0) Visual C 2019 Redist 二、试运行、兼容性测试 三、后记说明 支持H264版本推荐版本63,79,84,88,100,111,125(支持h264和pdf预览) 其他H264版…...
Gitee AI上线:开启免费DeepSeek模型新时代
Gitee Al上线,并宣布开启免费DeepSeek模型的时代,这是一个非常值得关注的消息,因 为它标志着国内在AI领域的一个重要发展。DeepSeek模型是由阿里巴巴达摩院开发的,旨 在提供强大的自然语言处理(NLP)能力。下面是一些关于这一事件…...
nginx常用命令及补充
在Linux环境下nginx常用命令如下: 1、查看nginx版本号命令 nginx -v 2、查找nginx配置文件路径已经检查配置文件是否正确 nginx -t 3、查找nginx安装目录 which nginx 4、查看nginx进程 ps -ef|grep nginx 5、进入到nginx的sbin目录后,执行一下…...
自动驾驶---聊聊传统规控和端到端
1 背景 在自动驾驶领域中,端到端模型的兴起确实对传统的规划控制方法(笔者并不同意网上以Rule-Base称呼传统规控,传统的规控其实也使用了很多优化算法和博弈算法)产生了挑战,但这就意味着传统规控方法就完全没有应用了…...
node.js + html + Sealos容器云 搭建简易多人实时聊天室demo 带源码
node.js html Sealos容器云 搭建简易多人实时聊天室demo 带源码 前言功能介绍(demo演示)sealos官网配置node.js 编写服务端代码前端ui 调用接口整体项目目录部署到服务器 前言 hello哦盆友们,这次我们来十几行代码做一个超简单的多人聊天…...
OpenFeign远程调用返回的是List<T>类型的数据
在使用 OpenFeign 进行远程调用时,如果接口返回的是 List 类型的数据,可以通过以下方式处理: 直接定义返回类型为List Feign 默认支持 JSON 序列化/反序列化,如果服务端返回的是 List的JSON格式数据,可以直接在 Feig…...
PCL 计算多边形的面积【2025最新版】
目录 一、算法原理1、概述2、主要函数3、函数源码二、代码实现三、结果展示博客长期更新,本文最近更新时间为:2025年1月17日。 一、算法原理 1、概述 根据给定的多边形的点云计算多边形的面积 A r e a = 1 2 ∑...
著名大模型评测榜单(不同评测方式)
在评估大语言模型的性能时,一种主流的途径就是选择不同的能力维度并且构建对应的评测任务,进而使用这些能力维度的评测任务对模型的性能进行测试与对比。由大型机构或者研究院所排出榜单。 评测指标 不同评测任务有不同的评指标,衡量模型的…...
国内知名Deepseek培训师培训讲师唐兴通老师讲授AI人工智能大模型实践应用
课程名称 《Deepseek人工智能大模型实践应用》 课程目标 全面了解Deepseek人工智能大模型的技术原理、功能特点及应用场景。 熟练掌握Deepseek大模型的提示词工程技巧,能够编写高质量的提示词。 掌握Deepseek大模型在办公、营销等领域的应用方法,提升…...
【AIGC】冷启动数据与多阶段训练在 DeepSeek 中的作用
博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: AIGC | ChatGPT 文章目录 💯前言💯冷启动数据的作用冷启动数据设计 💯多阶段训练的作用阶段 1:冷启动微调阶段 2:推理导向强化学习(RL࿰…...
如何打造一个更友好的网站结构?
在SEO优化中,网站的结构往往被忽略,但它其实是决定谷歌爬虫抓取效率的关键因素之一。一个清晰、逻辑合理的网站结构,不仅能让用户更方便地找到他们需要的信息,还能提升搜索引擎的抓取效率 理想的网站结构应该像一棵树,…...
【ROS2】RViz2自定义面板插件(rviz_common::Panel)的详细步骤
【ROS】郭老二博文之:ROS目录 1、简述 RViz2 的插件基于 ROS2 的插件库(pluginlib)机制,通过动态加载共享库实现功能扩展。 注意:RViz2 使用 QT 作为 UI 框架,虽然 QT 也有插件机制,但是 RViz2 并没有使用QT的插件机制,而是通过 pluginlib 加载功能模块来实现。 2、…...
漏洞分析 Spring Framework路径遍历漏洞(CVE-2024-38816)
漏洞概述 VMware Spring Framework是美国威睿(VMware)公司的一套开源的Java、JavaEE应用程序框架。该框架可帮助开发人员构建高质量的应用。 近期,监测到Spring Framework在特定条件下,存在目录遍历漏洞(网宿评分&am…...
《手札·避坑篇》2025年传统制造业企业数字化转型指南
一、引言 在数字化浪潮的推动下,传统制造业企业正加速向智能化、数字化转型。开源软件技术与制造MES(制造执行系统)产品的结合,为企业提供了高效、灵活且低成本的转型路径。本指南旨在为传统制造业企业的信息化负责人提供一套完整的数字化转型方案,助力企业实现高效、智能…...
MySQL中DDL操作是否支持事务
MySQL中DDL不支持事务。 传统MySQL(5.7及以前版本): DDL操作不支持事务执行DDL操作时会隐式提交当前会话的事务无法回滚DDL操作 MySQL 8.0版本: 引入了原子DDL特性(Atomic DDL)DDL操作变为原子性的&…...
GWO优化决策树回归预测matlab
灰狼优化算法(Grey Wolf Optimizer,简称 GWO)是一种群智能优化算法,由澳大利亚格里菲斯大学的 Mirjalii 等人于 2014 年提出。该算法的设计灵感源自灰狼群体的捕食行为,核心思想是模仿灰狼社会的结构与行为模式。 在本…...
掌握Spring @SessionAttribute:跨请求数据共享的艺术
SessionAttribute注解在Spring中的作用,就像是一个“数据中转站”。 在Web应用中,我们经常需要在多个请求之间共享数据。比如,用户登录后,我们需要在多个页面或请求中保持用户的登录状态。这时,SessionAttribute注解就…...
python读取Excel表格内公式的值
背景:在做业务周报的时候,有一个Excel模板,表里面包含了一些公式,dataframe写入到Excel的时候,有公式的部分通过python读出来的结果是None,需要进行优化参考链接: 如何使用openpyxl读取Excel单元…...
第三十八章:阳江自驾之旅:挖蟹与品鲜
经历了惠州海边那趟温馨又欢乐的自驾之旅后,小冷和小颖心中对旅行的热情愈发高涨。闲暇时,两人总会坐在客厅里,翻看着旅行杂志,或是在网上搜索各地的美景,那些充满魅力的地方不断吸引着他们,也让他们对下一…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能
1. 开发环境准备 安装DevEco Studio 3.1: 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK 项目配置: // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...
手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...
鸿蒙(HarmonyOS5)实现跳一跳小游戏
下面我将介绍如何使用鸿蒙的ArkUI框架,实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10pip3.10) 一:前言二:安装编译依赖二:安装Python3.10三:安装PIP3.10四:安装Paddlepaddle基础框架4.1…...
