当前位置: 首页 > news >正文

掌握Spring @SessionAttribute:跨请求数据共享的艺术

@SessionAttribute注解在Spring中的作用,就像是一个“数据中转站”。

在Web应用中,我们经常需要在多个请求之间共享数据。比如,用户登录后,我们需要在多个页面或请求中保持用户的登录状态。这时,@SessionAttribute注解就派上用场了。

它允许我们把一些数据暂时存放在一个叫做“Session”的地方。Session就像是服务器为每个用户开辟的一个“私人储物柜”,用户在这个“储物柜”里存放的东西(数据),可以在之后的请求中继续访问和使用。

使用@SessionAttribute注解,我们可以指定哪些数据需要存放到Session中。当控制器处理完一个请求,并决定把一些数据存放到Session时,这些数据就会被放到这个“私人储物柜”里。然后,当用户发起下一个请求时,我们就可以从这个“储物柜”里取出之前存放的数据,继续使用

所以,@SessionAttribute注解就像是一个“数据中转站”,它帮助我们在多个请求之间方便地共享数据。

相关文章:

掌握Spring @SessionAttribute:跨请求数据共享的艺术

SessionAttribute注解在Spring中的作用,就像是一个“数据中转站”。 在Web应用中,我们经常需要在多个请求之间共享数据。比如,用户登录后,我们需要在多个页面或请求中保持用户的登录状态。这时,SessionAttribute注解就…...

python读取Excel表格内公式的值

背景:在做业务周报的时候,有一个Excel模板,表里面包含了一些公式,dataframe写入到Excel的时候,有公式的部分通过python读出来的结果是None,需要进行优化参考链接: 如何使用openpyxl读取Excel单元…...

第三十八章:阳江自驾之旅:挖蟹与品鲜

经历了惠州海边那趟温馨又欢乐的自驾之旅后,小冷和小颖心中对旅行的热情愈发高涨。闲暇时,两人总会坐在客厅里,翻看着旅行杂志,或是在网上搜索各地的美景,那些充满魅力的地方不断吸引着他们,也让他们对下一…...

C++小等于的所有奇数和=最大奇数除2加1的平方。

缘由 三种思路解题&#xff1a;依据算术推导得到一个规律&#xff1a;小等于的所有奇数和等于最大奇数除以2加1的平方。将在后续发布&#xff0c;总计有十种推导出来的实现代码。 int a 0,aa 1,aaa 0;cin >> a; while (aa<a) aaa aa, aa 2;cout << aaa;i…...

设置IDEA的内存大小,让IDEA更流畅: 建议设置在 2048 MB 及以上

文章目录 引言I 更改内存设置基于窗口界面进行内存设置修改内存配置文件II IDEA中的一些常见问题及其解决方案引言 方式一:基于窗口界面进行内存设置方式二:修改内存配置文件I 更改内存设置 基于窗口界面进行内存设置 打开IDEA,上方菜单栏 Help > Change Memory Settin…...

Ranger Hive Service连接测试失败问题解决

个人博客地址&#xff1a;Ranger Hive Service连接测试失败问题解决 | 一张假钞的真实世界 异常信息如下&#xff1a; org.apache.ranger.plugin.client.HadoopException: Unable to connect to Hive Thrift Server instance.. Unable to connect to Hive Thrift Server inst…...

车机音频参数下发流程

比如以audioControlWrapper.setParametersToAmp(keyPairValues); 下发banlance为例&#xff0c;链路如下 hal层 1. AudioControl.cpp hardware\interfaces\automotive\audiocontrol\aidl\default\AudioControl.cpp ndk::ScopedAStatus AudioControl::setParametersToAmp(co…...

大模型推理——MLA实现方案

1.整体流程 先上一张图来整体理解下MLA的计算过程 2.实现代码 import math import torch import torch.nn as nn# rms归一化 class RMSNorm(nn.Module):""""""def __init__(self, hidden_size, eps1e-6):super().__init__()self.weight nn.Pa…...

redis之GEO 模块

文章目录 背景GeoHash 算法redis中的GeoHash 算法基本使用增加距离获取元素位置获取元素的 hash 值附近的元素 注意事项原理 背景 如果我们有需求需要存储地理坐标&#xff0c;为了满足高性能的矩形区域算法&#xff0c;数据表需要在经纬度坐标加上双向复合索引 (x, y)&#x…...

21.2.7 综合示例

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 【例 21.7】【项目&#xff1a;code21-007】填充职员表并打印。 本例使用到的Excel文件为&#xff1a;职员信息登记表.xlsx&#x…...

使用Docker + Ollama在Ubuntu中部署deepseek

1、安装docker 这里建议用docker来部署&#xff0c;方便简单 安装教程需要自己找详细的&#xff0c;会用到跳过 如果你没有安装 Docker&#xff0c;可以按照以下步骤安装&#xff1a; sudo apt update sudo apt install apt-transport-https ca-certificates curl software-p…...

【C语言标准库函数】三角函数

目录 一、头文件 二、函数简介 2.1. 正弦函数&#xff1a;sin(double angle) 2.2. 余弦函数&#xff1a;cos(double angle) 2.3. 正切函数&#xff1a;tan(double angle) 2.4. 反正弦函数&#xff1a;asin(double value) 2.5. 反余弦函数&#xff1a;acos(double value)…...

CNN-day9-经典神经网络ResNet

day10-经典神经网络ResNet 1 梯度消失问题 深层网络有个梯度消失问题&#xff1a;模型变深时&#xff0c;其错误率反而会提升&#xff0c;该问题非过拟合引起&#xff0c;主要是因为梯度消失而导致参数难以学习和更新。 2 网络创新 2015年何凯明等人提出deep residual netw…...

淘宝分类详情数据获取:Python爬虫的高效实现

在电商领域&#xff0c;淘宝作为中国最大的电商平台之一&#xff0c;其分类详情数据对于市场分析、竞争对手研究以及电商运营优化具有不可估量的价值。通过Python爬虫技术&#xff0c;我们可以高效地获取这些数据&#xff0c;为电商从业者提供强大的数据支持。 一、为什么选择…...

机器学习 —— 深入剖析线性回归模型

一、线性回归模型简介 线性回归是机器学习中最为基础的模型之一&#xff0c;主要用于解决回归问题&#xff0c;即预测一个连续的数值。其核心思想是构建线性方程&#xff0c;描述自变量&#xff08;特征&#xff09;和因变量&#xff08;目标值&#xff09;之间的关系。简单来…...

33.日常算法

1.螺旋矩阵 题目来源 给你一个 m 行 n 列的矩阵 matrix &#xff0c;请按照 顺时针螺旋顺序 &#xff0c;返回矩阵中的所有元素。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,2,3],[4,5,6],[7,8,9]] 输出&#xff1a;[1,2,3,6,9,8,7,4,5] class Solution { public:vec…...

#渗透测试#批量漏洞挖掘#微商城系统 goods SQL注入漏洞

免责声明 本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停止本文章读。 目录 一、漏洞概述 二、漏洞复现步骤 三、技术…...

【翻译+论文阅读】DeepSeek-R1评测:粉碎GPT-4和Claude 3.5的开源AI革命

目录 一、DeepSeek-R1 势不可挡二、DeepSeek-R1 卓越之处三、DeepSeek-R1 创新设计四、DeepSeek-R1 进化之路1. 强化学习RL代替监督微调学习SFL2. Aha Moment “啊哈”时刻3. 蒸馏版本仅采用SFT4. 未来研究计划 部分内容有拓展&#xff0c;部分内容有删除&#xff0c;与原文会有…...

Vision Transformer学习笔记(2020 ICLR)

摘要(Abstract):简述了ViT(Vision Transformer)模型的设计和实验结果,展示了其在大规模图像数据集上进行训练时的优越性能。该模型直接采用原始图像块作为输入,而不是传统的卷积神经网络(CNNs),并通过Transformer架构处理这些图像块以实现高效的图像识别。引言(Introdu…...

一步一步生成音乐类小程序的详细指南,结合AI辅助开发的思路

以下是一步一步生成音乐类小程序的详细指南,结合AI辅助开发的思路: 需求分析阶段核心功能梳理 音乐播放器(播放/暂停/进度条/音量)歌单分类(流行/古典/摇滚等)用户系统(登录/收藏/历史记录)搜索功能(歌曲/歌手/专辑)推荐系统(根据用户偏好推荐)技术选型 前端:微信…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

stm32进入Infinite_Loop原因(因为有系统中断函数未自定义实现)

这是系统中断服务程序的默认处理汇编函数&#xff0c;如果我们没有定义实现某个中断函数&#xff0c;那么当stm32产生了该中断时&#xff0c;就会默认跑这里来了&#xff0c;所以我们打开了什么中断&#xff0c;一定要记得实现对应的系统中断函数&#xff0c;否则会进来一直循环…...