wordpressAI工具,已接入Deepseek 支持自动生成文章、生成图片、生成长尾关键词、前端AI窗口互动、批量采集等






-
基于关键词或现有内容生成SEO优化的文章,支持多种AI服务(如OpenAI、百度文心一言、智谱AI等),并提供定时任务、内容采集、关键词生成等功能。
核心功能
-
文章生成
-
关键词生成:根据输入的关键词生成高质量文章。
-
内容优化:对现有内容进行SEO优化,包括标题和正文的优化。
-
伪原创:通过AI技术对文章进行改写,保持内容的核心主题不变,但语言表达和结构有所调整。
-
-
长尾关键词生成
-
批量生成:根据输入的关键词生成相关的长尾关键词,支持自定义提示词和额外要求。
-
数据库存储:生成的长尾关键词可以存储在数据库中,方便后续使用。
-
-
内容采集
-
单篇文章采集:根据提供的URL采集文章内容,并可选择是否进行SEO优化。
-
批量采集:根据指定的网站URL和采集规则,批量采集文章并保存到WordPress中。
-
-
定时任务
-
定时生成文章:设置定时任务,按照指定的频率(如每小时、每天等)自动生成文章。
-
任务调度:支持任务队列管理,确保任务按计划执行。
-
-
SEO分析与优化
-
SEO报告生成:根据文章内容生成SEO分析报告,包括关键词密度、SEO得分等。
-
性能分析:分析文章的阅读量、停留时间和跳出率等性能指标。
-
-
图片生成功能
-
图片生成:根据描述生成图片,并可选择保存到WordPress媒体库。
-
图片优化:对生成的图片进行优化,确保其符合SEO标准。
-
技术实现
-
API集成:插件集成了多个AI服务提供商的API,包括OpenAI、百度文心一言、智谱AI等,通过
call_api方法统一调用。 -
任务队列管理:使用WordPress的
wp_schedule_event函数实现任务队列管理,确保任务按计划执行。 -
前端交互:使用JavaScript实现前端交互,包括实时进度显示、任务状态更新等。
用户界面
-
后台管理页面:提供了一个直观的后台管理界面,用户可以配置插件的各种功能,包括API设置、定时任务设置、内容采集规则等。
-
文章生成界面:用户可以输入关键词或选择长尾关键词,设置文章生成的参数(如长度、额外要求等),并启动生成过程。
-
内容采集界面:用户可以输入网站URL,设置采集规则(如采集范围、文章选择器等),并启动采集过程。
后台可以设置会话窗口启用、会话文章限制等
测试网站的前端交互后台已设限制,所以体验不佳,可以自己下载插件
安装到wordpress启用AI前端交互功能
2025/2/6
接入deepseek ,deepseekV3 deepseek R1 模型
后台直接输入deepseek 的key即可使用(后台有获取key的官方链接)
更新支持输入多个关键词批量生成关键词,显示已生成的关键词和对应生成文章
生成文章和生成关键词支持异步后台运行,优化使用体验
支持批量关键词生成文章,用户自行上传关键词生成文章
其它功能优化不系列
暂未完全,还有BUG,后续后继续拓展和修复
插件下载地址WordPress插件免费下载-AI生成插件、自动发文工具、SEO优化教程
相关文章:
wordpressAI工具,已接入Deepseek 支持自动生成文章、生成图片、生成长尾关键词、前端AI窗口互动、批量采集等
基于关键词或现有内容生成SEO优化的文章,支持多种AI服务(如OpenAI、百度文心一言、智谱AI等),并提供定时任务、内容采集、关键词生成等功能。 核心功能 文章生成 关键词生成:根据输入的关键词生成高质量文章。 内容…...
Ollama部署 DeepSeek-R1:70B 模型的详细步骤
1. 确认环境准备 (1) 硬件要求 显存需求:70B 参数的模型需要大量显存。若使用 NVIDIA T4(16GB 显存),需多卡并行(如 8 卡)或开启量化(如 q4_0、q8_0)。内存需求:建议至…...
PAT乙级( 1009 说反话 1010 一元多项式求导)C语言版本超详细解析
1009 说反话 给定一句英语,要求你编写程序,将句中所有单词的顺序颠倒输出。 输入格式: 测试输入包含一个测试用例,在一行内给出总长度不超过 80的字符串。字符串由若干单词和若干空格组成,其中单词是由英文字母&#x…...
学习笔记十九:K8S生成pod过程
K8S生成pod过程 流程图具体生成过程用户提交 Pod 定义API Server 处理请求调度器分配节点(Scheduling)目标节点上的 Pod 创建网络配置状态上报与监控控制器管理(Controller Manager)就绪与服务发现 关键错误场景高级特性 流程图 具…...
Qwen2-VL:增强视觉语言模型对世界任意分辨率的感知能力
1、摘要 Qwen2-VL系列是Qwen-VL模型的高级升级版本,它重新定义了传统视觉处理中预设分辨率的方法。Qwen2-VL引入了Naive Dynamic Resolution机制,使模型能够动态处理不同分辨率的图像,并将其转换为不同数量的视觉标记。这种机制使模型能够生…...
原神新版本角色牌上新 七圣召唤增添新玩法
在原神这款游戏中,5.4版本更新后七圣召唤玩法将新增2张角色牌和对应天赋牌、3张行动牌,并进行部分卡牌平衡调整,今天就给大家介绍一下。 一、角色牌【基尼奇】 1.元素战技:选一个我方角色,自身附属钩索链接并进入夜魂…...
Spring 中的 事务 隔离级别以及传播行为
1. 事务隔离级别(Isolation Level) 事务隔离级别定义了事务在并发环境下的行为,主要解决以下问题: 脏读(Dirty Read):一个事务读取了另一个未提交事务的数据。 不可重复读(Non-Re…...
为多个GitHub账户配置SSH密钥
背景 当需要同时使用多个GitHub账户(例如工作和个人账户)时,默认的SSH配置可能导致冲突。本文介绍如何通过生成不同的SSH密钥对并配置SSH客户端来管理多个账户。 操作步骤 生成SSH密钥对 为每个GitHub账户生成独立的密钥对,并指…...
OSPF基础(3):区域划分
OSPF的区域划分 1、区域产生背景 路由器在同一个区域中泛洪LSA。为了确保每台路由器都拥有对网络拓扑的一致认知,LSDB需要在区域内进行同步。OSPF域如果仅有一个区域,随着网络规模越来越大,OSPF路由器的数量越来越多,这将导致诸…...
android studio无痛入门
在Android Studio中创建和管理项目主要涉及以下几个步骤: 1. 创建新项目 打开Android Studio,点击“Start a new Android Studio project”或者“File” > “New” > “New Project”。 选择一个模板,例如“Empty Activity”࿰…...
免费windows pdf编辑工具Epdf
Epdf(完全免费) 作者:不染心 时间:2025/2/6 Github: https://github.com/dog-tired/Epdf Epdf Epdf 是一款使用 Rust 编写的 PDF 编辑器,目前仍在开发中。它提供了一系列实用的命令行选项,方便用户对 PDF …...
CNN 卷积神经网络处理图片任务 | PyTorch 深度学习实战
前一篇文章,学习率调整策略 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started CNN 卷积神经网络 CNN什么是卷积工作原理深度学习的卷积运算提取特征不同特征核的效果比较卷积核感受野共享权重池化 示例源码 …...
LeetCode 128: 最长连续序列
LeetCode 128: 最长连续序列 题目: 给定一个未排序的整数数组 nums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。 请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 示例 1: 输入:nums […...
大语言模型需要的可观测性数据的关联方式
可观测性数据的关联方式及其优缺点 随着现代分布式架构和微服务的普及,可观测性(Observability)已经成为确保系统健康、排查故障、优化性能的重要组成部分。有效的可观测性数据关联方式不仅能够帮助我们实时监控系统的运行状态,还…...
【韩顺平linux】部分上课笔记整理
整理一下一些韩顺平老师上课时候的笔记 课程:【小白入门 通俗易懂】韩顺平 一周学会Linux linux环境:使用阿里云服务器 笔记参考 : [学习笔记]2021韩顺平一周学会Linux 一、自定义函数 基本语法 应用实例: 计算两个参数的和…...
python调用pc的语音借口
先安装: pip install pyttsx3再运行: import pyttsx3 # 初始化语音引擎 def init_engine():engine pyttsx3.init()# 设置中文语音voices engine.getProperty(voices)for voice in voices:if chinese in voice.name.lower():engine.setProperty(voice…...
【Golang学习之旅】Golang 内存管理与 GC 机制详解
文章目录 前言1. Go 语言的内存管理的简述2. Golang 内存管理机制2.1 Go 语言的内存分配模型2.2 Go 变量分配示例2.3 Go 语言的内存池(sync.Pool) 3. Golang 垃圾回收(GC)机制详解3.1 Go 的 GC 机制概述3.2 GC 触发条件3.3 手动触…...
Kamailio 各个功能的共同点、不同点及应用场景
Kamailio 各个功能的共同点、不同点及应用场景: 功能共同点不同点应用场景SIP 注册服务器处理用户注册请求,维护用户位置信息专注于用户设备的注册和注销,维护设备位置企业内部通信系统,确保用户设备的动态注册和注销SIP 代理服务…...
Linux(CentOS)安装 Nginx
CentOS版本:CentOS 7 Nginx版本:1.24.0 两种安装方式: 一、通过 yum 安装,最简单,一键安装,全程无忧。 二、通过编译源码包安装,需具备配置相关操作。 最后附:设置 Nginx 服务开…...
string 与 wstring 的字符编码
测试代码: #include<stdio.h> #include<stdlib.h> #include<windows.h> #include <locale.h> #include <string> #include <iostream>// 函数用于计算UTF-8字符串中的字符数 int utf8_strlen(const char* str) {int len = 0;for (; *s…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
go 里面的指针
指针 在 Go 中,指针(pointer)是一个变量的内存地址,就像 C 语言那样: a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10,通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...
vue3 daterange正则踩坑
<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...
倒装芯片凸点成型工艺
UBM(Under Bump Metallization)与Bump(焊球)形成工艺流程。我们可以将整张流程图分为三大阶段来理解: 🔧 一、UBM(Under Bump Metallization)工艺流程(黄色区域ÿ…...
2025.6.9总结(利与弊)
凡事都有两面性。在大厂上班也不例外。今天找开发定位问题,从一个接口人不断溯源到另一个 接口人。有时候,不知道是谁的责任填。将工作内容分的很细,每个人负责其中的一小块。我清楚的意识到,自己就是个可以随时替换的螺丝钉&…...
python打卡第47天
昨天代码中注意力热图的部分顺移至今天 知识点回顾: 热力图 作业:对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图,展示模…...
MeanFlow:何凯明新作,单步去噪图像生成新SOTA
1.简介 这篇文章介绍了一种名为MeanFlow的新型生成模型框架,旨在通过单步生成过程高效地将先验分布转换为数据分布。文章的核心创新在于引入了平均速度的概念,这一概念的引入使得模型能够通过单次函数评估完成从先验分布到数据分布的转换,显…...

