pytorch torch.linalg模块介绍
torch.linalg
是 PyTorch 的 线性代数 (Linear Algebra) 子模块,它提供了许多 高效的矩阵操作和分解方法,类似于 NumPy 的 numpy.linalg
或 SciPy 的 scipy.linalg
,但针对 GPU 加速和自动微分 进行了优化。
1. 矩阵基本运算
矩阵乘法
torch.linalg.matmul
:执行两个张量的矩阵乘法。它可以处理多种情况,包括批量矩阵乘法。
import torch# 创建两个矩阵
A = torch.tensor([[1, 2], [3, 4]])
B = torch.tensor([[5, 6], [7, 8]])
result = torch.linalg.matmul(A, B)
print(result)
矩阵转置
torch.linalg.t
:用于计算矩阵的转置。
import torchA = torch.tensor([[1, 2], [3, 4]])
transposed_A = torch.linalg.t(A)
print(transposed_A)
2. 矩阵分解
奇异值分解(SVD)
import torchA = torch.tensor([[1, 2], [3, 4]], dtype=torch.float32)
U, S, Vh = torch.linalg.svd(A)
print("U:", U)
print("S:", S)
print("Vh:", Vh)
QR 分解
torch.linalg.qr
:将矩阵分解为一个正交矩阵 和一个上三角矩阵 的乘积,即 A= QR
import torchA = torch.tensor([[1, 2], [3, 4]], dtype=torch.float32)
Q, R = torch.linalg.qr(A)
print("Q:", Q)
print("R:", R)
3. 矩阵的特征值和特征向量
计算特征值和特征向量
torch.linalg.eig
:用于计算方阵的特征值和特征向量。对于实对称矩阵,可以使用torch.linalg.eigh
以获得更高的效率。
import torchA = torch.tensor([[1, 2], [2, 1]], dtype=torch.float32)
eigenvalues, eigenvectors = torch.linalg.eig(A)
print("Eigenvalues:", eigenvalues)
print("Eigenvectors:", eigenvectors)
4. 求解线性方程组
import torch# 系数矩阵 A
A = torch.tensor([[3, 1], [1, 2]], dtype=torch.float32)
# 常数向量 b
b = torch.tensor([9, 8], dtype=torch.float32)
x = torch.linalg.solve(A, b)
print("Solution x:", x)
5. 矩阵的范数计算
计算矩阵的范数
torch.linalg.norm
:用于计算矩阵或向量的范数,支持多种范数类型,如 1 - 范数、2 - 范数、无穷范数等。
import torchA = torch.tensor([[1, 2], [3, 4]], dtype=torch.float32)
norm_2 = torch.linalg.norm(A, ord=2)
print("2 - norm of A:", norm_2)
torch.linalg
模块为 PyTorch 用户提供了一套完整的线性代数工具,这些功能在机器学习、深度学习、计算机图形学等领域都有广泛的应用,例如在优化算法、降维技术、图像和信号处理等方面。
相关文章:

pytorch torch.linalg模块介绍
torch.linalg 是 PyTorch 的 线性代数 (Linear Algebra) 子模块,它提供了许多 高效的矩阵操作和分解方法,类似于 NumPy 的 numpy.linalg 或 SciPy 的 scipy.linalg,但针对 GPU 加速和自动微分 进行了优化。 1. 矩阵基本运算 矩阵乘法 torc…...

光伏-报告显示,假期内,硅料端签单顺序发货相对稳定。若3月份下游存提产,则不排除硅料价格有上调预期。
据TrendForce集邦咨询报告显示,假期内,硅料端按照前期签单顺序发货,相对稳定。若3月份下游存提产,则不排除硅料价格有上调预期。 002306中科云网 旅游 | 公司为提供复合菜系特色餐饮的连锁企业,形成了以粤菜ÿ…...
【web自动化】指定chromedriver以及chrome路径
selenium自动化,指定chromedriver,以及chrome路径 对应这篇文章,可以点击查看,详情 from selenium import webdriverdef get_driver():# 获取配置对象option webdriver.ChromeOptions()option.add_experimental_option("de…...
顺丰数据分析(数据挖掘)面试题及参考答案
你觉得数据分析人员必备的技能有哪些? 数据分析人员需具备多方面技能,以应对复杂的数据处理与解读工作。 数据处理能力:这是基础且关键的技能。数据常以杂乱、不完整的形式存在,需通过清洗,去除重复、错误及缺失值数据,确保数据质量。例如,在电商销售数据中,可能存在价…...

Android studio:顶部导航栏Toolbar
主流APP在顶部都配有导航栏,在 Android 中,ActionBar 是默认启用的,它是位于屏幕顶部的一个工具栏,用来放置应用的标题、导航和操作菜单。 如果你想使用自定义的 Toolbar 来替代 ActionBar,应该先关闭它。可以通过设置…...

mmap 文件映射
🌈 个人主页:Zfox_ 🔥 系列专栏:Linux 目录 一:🔥 mmap介绍🦋 基本说明🦋 参数介绍🦋 返回值 二:🔥 demo代码🦋 写入映射🦋…...

基于微信小程序的医院预约挂号系统的设计与实现
hello hello~ ,这里是 code袁~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 🦁作者简介:一名喜欢分享和记录学习的在校大学生…...

【Linux】Socket编程—UDP
🔥 个人主页:大耳朵土土垚 🔥 所属专栏:Linux系统编程 这里将会不定期更新有关Linux的内容,欢迎大家点赞,收藏,评论🥳🥳🎉🎉🎉 文章目…...
2025年物联网相关专业毕业论文选题参考,文末联系,选题相关资料提供
一、智能穿戴解决方案研究方向 序号解决方案论文选题论文研究方向1智能腰带健康监测基于SpringBoot和Vue的智能腰带健康监测数据可视化平台开发研究如何利用SpringBoot和Vue技术栈开发一个数据可视化平台,用于展示智能腰带健康监测采集的数据,如心率、血…...

如何在WPS和Word/Excel中直接使用DeepSeek功能
以下是将DeepSeek功能集成到WPS中的详细步骤,无需本地部署模型,直接通过官网连接使用:1. 下载并安装OfficeAI插件 (1)访问OfficeAI插件下载地址:OfficeAI助手 - 免费办公智能AI助手, AI写作,下载…...

DeepSeek之Api的使用(将DeepSeek的api集成到程序中)
一、DeepSeek API 的收费模式 前言:使用DeepSeek的api是收费的 免费版: 可能提供有限的免费额度(如每月一定次数的 API 调用),适合个人开发者或小规模项目。 付费版: 超出免费额度后,可能需要按…...

使用DeepSeek实现AI自动编码
最近deepseek很火,低成本训练大模型把OpenAI、英伟达等股票搞得一塌糊涂。那它是什么呢,对于咱们程序员编码能有什么用呢?DeepSeek 是一款先进的人工智能语言模型,在自然语言处理和代码生成方面表现出色。它经过大量代码数据训练&…...

30~32.ppt
目录 30.导游小姚-介绍首都北京❗ 题目 解析 31.小张-旅游产品推广文章 题目 解析 32.小李-水的知识❗ 题目 解析 30.导游小姚-介绍首都北京❗ 题目 解析 新建幻灯片-从大纲-重置-检查设计→主题对话框→浏览主题:考生文件夹(注意&#x…...
Java的匿名内部类转为lamada表达式
在Java中,匿名内部类通常用于创建没有命名类的实例。例如,你可能需要创建一个实现了某个接口的匿名类,或者在需要重写某个方法时使用它。在Java 8及更高版本中,你可以使用Lambda表达式来替代传统的匿名内部类,使得代码…...

redis高级数据结构Stream
文章目录 背景stream概述消息 ID消息内容常见操作独立消费创建消费组消费 Stream弊端Stream 消息太多怎么办?消息如果忘记 ACK 会怎样?PEL 如何避免消息丢失?分区 Partition Stream 的高可用总结 背景 为了解决list作为消息队列是无法支持消息多播问题,Redis5.0…...
LeetCode781 森林中的兔子
问题描述 在一片神秘的森林里,住着许多兔子,但是我们并不知道兔子的具体数量。现在,我们对其中若干只兔子进行提问,问题是 “还有多少只兔子与你(指被提问的兔子)颜色相同?” 我们将每只兔子的…...
单硬盘槽笔记本更换硬盘
背景 本人的笔记本电脑只有一个硬盘槽,而且没有M.2的硬盘盒,只有一个移动硬盘 旧硬盘:512G 新硬盘:1T 移动硬盘:512G 参考链接:https://www.bilibili.com/video/BV1iP41187SW/?spm_id_from333.1007.t…...
EB生成配置的过程
EB Tresos Studio,简称EB,通过图形化的模式进行配置生成,并根据选项配置生成配置代码,即 MCAL 层各个模块的配置参数。 在 MCAL 代码中,分为静态代码和配置代码。静态代码,就是 AUTOSAR 规范内容,包含对硬件的封装以及标准化接口的封装;配置代码一般用于配置初始化结构…...
量化交易数据获取:xtquant库的高效应用
量化交易数据获取:xtquant库的高效应用 在量化交易领域,历史行情数据的重要性不言而喻。它不仅为策略回测提供基础,也是实时交易决策的重要参考。本文将介绍如何使用xtquant库来高效获取和处理历史行情数据。 技术背景与应用场景 对于量化…...
哨兵模式与 Redis Cluster:高可用 Redis 的深度剖析
深入探讨 Redis 高可用性解决方案:哨兵模式与 Redis Cluster 一、哨兵模式(Redis Sentinel)深入解析 (一)工作原理详解 哨兵模式通过一个或多个哨兵实例监控 Redis 主从复制集群,确保在主节点发生故障时…...

智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...

蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...