LQB(1)-python-各种基础排序
前言
除了内置的快速排序sort(),python也可以实现冒泡排序、选择排序、插入排序、快速排序、归并排序和桶排序。
一、冒泡排序 (Bubble Sort)
基础代码
def bubble_sort(arr):n = len(arr)for i in range(n):swapped = False # 优化:若本轮无交换则提前终止for j in range(n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]swapped = Trueif not swapped:breakreturn arr
核心知识点
-
原理:相邻元素两两比较,将较大元素逐渐"冒泡"到右侧。(每次循环都选出本循环最大的排后面)
-
时间复杂度:
-
最优:O(n)(已有序时)
-
最差:O(n²)
-
-
稳定性:稳定(相等元素不交换)
-
适用场景:小规模数据或教学演示
二、选择排序 (Selection Sort)
基础代码
def selection_sort(arr):n = len(arr)for i in range(n):min_idx = i # 记录最小元素索引for j in range(i+1, n):if arr[j] < arr[min_idx]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i] # 交换位置return arr
核心知识点
-
原理:每次从未排序部分选择最小元素,与未排序部分的起始位置交换。
-
时间复杂度:始终为 O(n²)
-
稳定性:不稳定(交换可能破坏顺序)
-
适用场景:简单实现,但效率低,一般仅用于教学
三、插入排序 (Insertion Sort)
基础代码
def insertion_sort(arr):for i in range(1, len(arr)):key = arr[i] # 当前待插入元素j = i-1while j >=0 and key < arr[j]:arr[j+1] = arr[j] # 后移元素j -= 1arr[j+1] = key # 插入正确位置return arr
核心知识点
-
原理:将未排序元素逐个插入已排序序列的正确位置。
-
时间复杂度:
-
最优:O(n)(已有序时)
-
最差:O(n²)
-
-
稳定性:稳定
-
适用场景:小规模数据或近乎有序的数据
四、快速排序 (Quick Sort)
基础代码
def quick_sort(arr):if len(arr) <= 1:return arrpivot = arr[len(arr)//2] # 选择中间元素为基准值left = [x for x in arr if x < pivot]middle = [x for x in arr if x == pivot]right = [x for x in arr if x > pivot]return quick_sort(left) + middle + quick_sort(right)
核心知识点
-
原理:分治法 + 递归,选择一个基准值将数组分为三部分(小于、等于、大于基准值)。
-
时间复杂度:
-
平均:O(n log n)
-
最差:O(n²)(当基准值选择不当时)
-
-
稳定性:不稳定
-
优化点:三数取中法选择基准值、尾递归优化
-
适用场景:大规模随机数据(实际应用最广泛的排序算法)
五、归并排序 (Merge Sort)
基础代码
def merge_sort(arr):if len(arr) <= 1:return arrmid = len(arr) // 2left = merge_sort(arr[:mid])right = merge_sort(arr[mid:])return merge(left, right)def merge(left, right):result = []i = j = 0while i < len(left) and j < len(right):if left[i] < right[j]:result.append(left[i])i += 1else:result.append(right[j])j += 1result.extend(left[i:])result.extend(right[j:])return result
核心知识点
-
原理:分治法,将数组递归拆分为两半,排序后合并。
-
时间复杂度:始终 O(n log n)
-
空间复杂度:O(n)(合并时需要额外空间)
-
稳定性:稳定
-
适用场景:需要稳定排序且内存充足时(如数据库排序)
六、桶排序 (Bucket Sort)
基础代码
def bucket_sort(arr, bucket_size=5):if len(arr) == 0:return arrmin_val, max_val = min(arr), max(arr)bucket_count = (max_val - min_val) // bucket_size + 1buckets = [[] for _ in range(bucket_count)]for num in arr:buckets[(num - min_val) // bucket_size].append(num)result = []for bucket in buckets:result.extend(sorted(bucket)) # 每个桶使用其他排序算法return result
核心知识点
-
原理:将数据分到有限数量的桶中,每个桶单独排序后合并。
-
时间复杂度:
-
平均:O(n + k)(k为桶数量)
-
最差:O(n²)(所有元素集中在一个桶时)
-
-
稳定性:取决于桶内排序算法的稳定性
-
适用场景:数据分布均匀且范围已知(如年龄排序)
对比
算法 | 时间复杂度(平均) | 稳定性 | 空间复杂度 | 适用场景 |
---|---|---|---|---|
冒泡排序 | O(n²) | 稳定 | O(1) | 教学演示 |
选择排序 | O(n²) | 不稳定 | O(1) | 简单实现 |
插入排序 | O(n²) | 稳定 | O(1) | 小规模或近乎有序数据 |
快速排序 | O(n log n) | 不稳定 | O(log n) | 大规模随机数据 |
归并排序 | O(n log n) | 稳定 | O(n) | 需要稳定排序且内存充足 |
桶排序 | O(n + k) | 稳定 | O(n + k) | 数据分布均匀且范围已知 |
使用
-
优先选择快速排序(Python内置的
sorted()
,使用了 Timsort 算法,结合了归并排序和插入排序)。 -
对小规模数据(如 n < 100)可考虑插入排序。
-
需要稳定排序时选择归并排序。
相关文章:

LQB(1)-python-各种基础排序
前言 除了内置的快速排序sort(),python也可以实现冒泡排序、选择排序、插入排序、快速排序、归并排序和桶排序。 一、冒泡排序 (Bubble Sort) 基础代码 def bubble_sort(arr):n len(arr)for i in range(n):swapped False # 优化:若本轮无交换则提前…...

解锁国内主流前端与后端框架
前端框架大揭秘 在当今的 Web 开发领域,前端框架的地位愈发举足轻重。随着用户对 Web 应用交互性和体验性要求的不断攀升,前端开发不再仅仅是简单的页面布局与样式设计,更需要构建复杂且高效的用户界面。前端框架就像是一位得力助手…...

使用OBS推流,srs服务器播放
说明: ffmpeg可以推流,但是是命令行方式不太友好,还可以使用主流的OBS开源推流软件,可从官网Open Broadcaster Software | OBS 下载最新版本,目前很多网络主播都是用它做直播。该软件支持本地视频文件以及摄像头推流。…...

【鸿蒙HarmonyOS Next实战开发】多媒体视频播放-ijkplayer
简介 ijkplayer是OpenHarmony和HarmonyOS环境下可用的一款基于FFmpeg的视频播放器。 演示 下载安装 ohpm install ohos/ijkplayer使用说明 import { IjkMediaPlayer } from "ohos/ijkplayer";import type { OnPreparedListener } from "ohos/ijkplayer";i…...

GRU 和 LSTM 公式推导与矩阵变换过程图解
GRU 和 LSTM 公式推导与矩阵变换过程图解 GRULSTM 本文的前置篇链接: 单向/双向,单层/多层RNN输入输出维度问题一次性解决 GRU GRU(Gate Recurrent Unit)是循环神经网络(RNN)的一种,可以解决RNN中不能长期…...

现在中国三大运营商各自使用的哪些band频段
现在中国三大运营商4G和5G频段分配情况: 中国移动 4G频段: TD-LTE: Band 39:1880-1920MHz,实际使用1885-1915MHz。 Band 40:2300-2400MHz,实际使用2320-2370MHz。 Band 41:2515-26…...

使用Jenkins实现鸿蒙HAR应用的自动化构建打包
使用Jenkins实现鸿蒙HAR应用的自动化构建打包 在软件开发领域,自动化构建是提高开发效率和确保代码质量的重要手段。特别是在鸿蒙(OpenHarmony)应用开发中,自动化构建更是不可或缺。本文将详细介绍如何使用Jenkins命令行工具实现…...

AI时代,职场人如何开启学习之旅
为什么要学习 AI 在当今数字化时代,AI 正以前所未有的速度改变着我们的工作和生活方式。从智能客服到自动化生产,从数据分析到个性化推荐,AI 已经广泛渗透到各个行业和领域。学习 AI,对于工作人员来说,不仅是提升工作…...

MIT6.824 Lecture 2-RPC and Threads Lecture 3-GFS
Lecture 2-RPC and Threads Go语言在多线程、同步,还有很好用的RPC包 《Effective Go》 线程是实现并发的重要工具 在分布式系统里关注多线程的原因: I/O concurrencyParallelismConvenience Thread challenges 用锁解决race问题 Coordination channel…...

MySQL第五次作业
根据图片内容完成作业 1.建表 (1)建立两个表:goods(商品表)、orders(订单表) mysql> create table goods( -> gid char(8) primary key, -> name varchar(10), -> price decimal(8,2), -> num int); mysql> create t…...

【PDF提取内容】如何批量提取PDF里面的文字内容,把内容到处表格或者批量给PDF文件改名,基于C++的实现方案和步骤
以下分别介绍基于 C 批量提取 PDF 里文字内容并导出到表格,以及批量给 PDF 文件改名的实现方案、步骤和应用场景。 批量提取 PDF 文字内容并导出到表格 应用场景 文档数据整理:在处理大量学术论文、报告等 PDF 文档时,需要提取其中的关键信…...

智慧机房解决方案(文末联系,领取整套资料,可做论文)
智慧机房解决方案-软件部分 一、方案概述 本智慧机房解决方案旨在通过硬件设备与软件系统的深度整合,实现机房的智能化管理与服务,提升机房管理人员的工作效率,优化机房运营效率,确保机房设备的安全稳定运行。软件部分包括机房管…...

【C编程问题集中营】使用数组指针时容易踩得坑
【C编程问题集中营】使用数组指针时容易踩得坑 文章目录 【C编程问题集中营】使用数组指针时容易踩得坑一、获取数组首地址二、应用场景举例2.1 正常场景2.2 异常场景 三、总结 一、获取数组首地址 一维数组的首地址即数组第一个元素的指针,常用的获取一维数组首地…...

【Redis】Linux、Windows、Docker 环境下部署 Redis
一、Linux环境部署Redis 1、卸载 # 查看 Redis 是否还在运行 [appuserlocalhost redis]$ ps -ef|grep redis appuser 135694 125912 0 14:24 pts/1 00:00:00 ./bin/redis-server *:6379 appuser 135731 125912 0 14:24 pts/1 00:00:00 grep --colorauto redis# 停止…...

反函数定义及其推导
文章目录 定义存在条件举例说明总结 反函数是数学中一种特殊的函数,用于“逆转”另一个函数的映射关系。 定义 设有一个函数 f : X → Y f: X \to Y f:X→Y。如果存在一个函数 g : Y → X g: Y \to X g:Y→X,使得对于所有 x ∈ X x \in X x∈X 和 y…...

2025.2.9机器学习笔记:PINN文献阅读
2025.2.9周报 文献阅读题目信息摘要Abstract创新点网络架构实验结论缺点以及后续展望 文献阅读 题目信息 题目: GPT-PINN:Generative Pre-Trained Physics-Informed Neural Networks toward non-intrusive Meta-learning of parametric PDEs期刊: Fini…...

Oracle数据连接 Dblink
拓展: oracle远程登陆数据库 1.oracle客户端或者服务端 2.修改你的电脑如下路径文件(服务器IP,服务器的数据库名,服务器的数据库端口号) c:\oracle\product\10.2.0\db_1\NETWORK\ADMIN\tnsnames.ora orcl_109 (DESCRIPTION …...

fetch请求总结,fastadmin中后台接口强制返回json数据
fetch请求 提交图片,只支持formData方式,这样会自动变为multiform方式,而且一般的post大多都可以用这样的方式来完成请求 const formData new FormData(); formData.append(file, fileInput.files[0]); formData.append(pid, id); formData.append(dc, 1);fetch(/api/common…...

基于STM32的智能鱼缸水质净化系统设计
🤞🤞大家好,这里是5132单片机毕设设计项目分享,今天给大家分享的是智能鱼缸水质净化系统。 目录 1、设计要求 2、系统功能 3、演示视频和实物 4、系统设计框图 5、软件设计流程图 6、原理图 7、主程序 8、总结 1、设计要求…...

JAVA安全—FastJson反序列化利用链跟踪autoType绕过
前言 FastJson这个漏洞我们之前讲过了,今天主要是对它的链条进行分析一下,明白链条的构造原理。 Java安全—log4j日志&FastJson序列化&JNDI注入_log4j漏洞-CSDN博客 漏洞版本 1.2.24及以下没有对序列化的类做校验,导致漏洞产生 1.2.25-1.2.41增加了黑名单限制,…...

格式化字符串漏洞(Format String Vulnerability)
格式化字符串漏洞(Format String Vulnerability)是程序中因不当处理格式化字符串参数而导致的一类安全漏洞,常被攻击者利用来读取内存数据、篡改程序执行流程,甚至执行任意代码。以下是对其原理、利用方式及防御措施的详细解析&am…...

C++--iomanip库
目录 1. 设置字段宽度:std::setw() 2. 设置浮点数精度:std::setprecision() 3. 设置填充字符:std::setfill() 4. 控制对齐方式:std::left 和 std::right,std::internal 5. 控制进制输出:std::hex、std…...

Redis 集群原理、主从复制和哨兵模式的详细讲解
引言:本文记录了博主在学习Redis的过程中的原理,了解为什么使用与怎么样使用 Redis 集群,在使用 Redis 集群时出现的主从复制和哨兵模式的相关知识。本文并不涉及Redis安装。 文章目录 一、简单介绍什么是 Redis二、为什么要使用 Redis 集群三…...

基于Java的远程视频会议系统(源码+系统+论文)
第一章 概述 1.1 本课题的研究背景 随着人们对视频和音频信息的需求愈来愈强烈,追求远距离的视音频的同步交互成为新的时尚。近些年来,依托计算机技术、通信技术和网络条件的发展,集音频、视频、图像、文字、数据为一体的多媒体信息ÿ…...

springboot 事务管理
在Spring Boot中,事务管理是通过Spring框架的事务管理模块来实现的。Spring提供了声明式事务管理和编程式事务管理两种方式。通常,我们使用声明式事务管理,因为它更简洁且易于维护。 1. 声明式事务管理 声明式事务管理是通过注解来实现的。…...

深度学习-神经机器翻译模型
以下为你介绍使用Python和深度学习框架Keras(基于TensorFlow后端)实现一个简单的神经机器翻译模型的详细步骤和代码示例,该示例主要处理英 - 法翻译任务。 1. 安装必要的库 首先,确保你已经安装了以下库: pip insta…...

.NET周刊【2月第1期 2025-02-02】
国内文章 dotnet 9 已知问题 默认开启 CET 导致进程崩溃 https://www.cnblogs.com/lindexi/p/18700406 本文记录 dotnet 9 的一个已知且当前已修问题。默认开启 CET 导致一些模块执行时触发崩溃。 dotnet 使用 ColorCode 做代码着色器 https://www.cnblogs.com/lindexi/p/…...

【合集】Java进阶——Java深入学习的笔记汇总 amp; 再论面向对象、数据结构和算法、JVM底层、多线程
前言 spring作为主流的 Java Web 开发的开源框架,是Java 世界最为成功的框架,持续不断深入认识spring框架是Java程序员不变的追求;而spring的底层其实就是Java,因此,深入学习Spring和深入学习Java是硬币的正反面&…...

GPU、CUDA 和 cuDNN 学习研究【笔记】
分享自己在入门显存优化时看过的一些关于 GPU 和 CUDA 和 cuDNN 的网络资料。 更多内容见: Ubuntu 22.04 LTS 安装 PyTorch CUDA 深度学习环境-CSDN博客CUDA 计算平台 & CUDA 兼容性【笔记】-CSDN博客 文章目录 GPUCUDACUDA Toolkit都包含什么?NVID…...

【5】阿里面试题整理
[1]. 介绍一下ZooKeeper ZooKeeper是一个开源的分布式协调服务,核心功能是通过树形数据模型(ZNode)和Watch机制,解决分布式系统的一致性问题。 它使用ZAB协议保障数据一致性,典型场景包括分布式锁、配置管理和服务注…...