反函数定义及其推导
文章目录
- 定义
- 存在条件
- 举例说明
- 总结
反函数是数学中一种特殊的函数,用于“逆转”另一个函数的映射关系。
定义
设有一个函数 f : X → Y f: X \to Y f:X→Y。如果存在一个函数 g : Y → X g: Y \to X g:Y→X,使得对于所有 x ∈ X x \in X x∈X 和 y ∈ Y y \in Y y∈Y 都满足下面两个条件:
- 左逆性质: g ( f ( x ) ) = x g(f(x)) = x g(f(x))=x (对于所有 x ∈ X x \in X x∈X)
- 右逆性质: f ( g ( y ) ) = y f(g(y)) = y f(g(y))=y (对于所有 y ∈ Y y \in Y y∈Y)
那么函数 g g g 就称为函数 f f f 的反函数,记作 f − 1 f^{-1} f−1。
存在条件
反函数 f − 1 f^{-1} f−1 存在的充分必要条件是函数 f f f 必须是一个双射(即既单射又满射):
- 单射(一一对应):不同的 x x x 映射到不同的 y y y。
- 满射:函数 f f f 的值覆盖了整个 Y Y Y 集合。
如果 f f f 不是双射,那么反函数在严格意义上不存在。
举例说明
假设有函数 f ( x ) = 2 x + 3 f(x) = 2x + 3 f(x)=2x+3 ,它是双射(在实数集合上),那么可以求其反函数:
- 写出方程: y = 2 x + 3 y = 2x + 3 y=2x+3。
- 解这个方程得到 x x x: x = y − 3 2 x = \frac{y - 3}{2} x=2y−3。
- 因此, f − 1 ( y ) = y − 3 2 f^{-1}(y) = \frac{y - 3}{2} f−1(y)=2y−3 或记作 f − 1 ( x ) = x − 3 2 f^{-1}(x) = \frac{x - 3}{2} f−1(x)=2x−3。
验证:
- f ( f − 1 ( x ) ) = 2 ( x − 3 2 ) + 3 = x − 3 + 3 = x f(f^{-1}(x)) = 2\left(\frac{x - 3}{2}\right) + 3 = x - 3 + 3 = x f(f−1(x))=2(2x−3)+3=x−3+3=x。
- f − 1 ( f ( x ) ) = ( 2 x + 3 ) − 3 2 = x f^{-1}(f(x)) = \frac{(2x + 3) - 3}{2} = x f−1(f(x))=2(2x+3)−3=x。
这说明 f − 1 f^{-1} f−1 确实是 f f f 的反函数。
总结
反函数的核心思想是将函数的映射过程反过来。对于每个 y = f ( x ) y = f(x) y=f(x),反函数 f − 1 f^{-1} f−1 能够唯一地将 y y y 映射回 x x x。这在解决方程、数据逆变换、以及其他许多数学和工程问题中都有广泛应用。
ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ
ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ
相关文章:
反函数定义及其推导
文章目录 定义存在条件举例说明总结 反函数是数学中一种特殊的函数,用于“逆转”另一个函数的映射关系。 定义 设有一个函数 f : X → Y f: X \to Y f:X→Y。如果存在一个函数 g : Y → X g: Y \to X g:Y→X,使得对于所有 x ∈ X x \in X x∈X 和 y…...

2025.2.9机器学习笔记:PINN文献阅读
2025.2.9周报 文献阅读题目信息摘要Abstract创新点网络架构实验结论缺点以及后续展望 文献阅读 题目信息 题目: GPT-PINN:Generative Pre-Trained Physics-Informed Neural Networks toward non-intrusive Meta-learning of parametric PDEs期刊: Fini…...
Oracle数据连接 Dblink
拓展: oracle远程登陆数据库 1.oracle客户端或者服务端 2.修改你的电脑如下路径文件(服务器IP,服务器的数据库名,服务器的数据库端口号) c:\oracle\product\10.2.0\db_1\NETWORK\ADMIN\tnsnames.ora orcl_109 (DESCRIPTION …...
fetch请求总结,fastadmin中后台接口强制返回json数据
fetch请求 提交图片,只支持formData方式,这样会自动变为multiform方式,而且一般的post大多都可以用这样的方式来完成请求 const formData new FormData(); formData.append(file, fileInput.files[0]); formData.append(pid, id); formData.append(dc, 1);fetch(/api/common…...

基于STM32的智能鱼缸水质净化系统设计
🤞🤞大家好,这里是5132单片机毕设设计项目分享,今天给大家分享的是智能鱼缸水质净化系统。 目录 1、设计要求 2、系统功能 3、演示视频和实物 4、系统设计框图 5、软件设计流程图 6、原理图 7、主程序 8、总结 1、设计要求…...

JAVA安全—FastJson反序列化利用链跟踪autoType绕过
前言 FastJson这个漏洞我们之前讲过了,今天主要是对它的链条进行分析一下,明白链条的构造原理。 Java安全—log4j日志&FastJson序列化&JNDI注入_log4j漏洞-CSDN博客 漏洞版本 1.2.24及以下没有对序列化的类做校验,导致漏洞产生 1.2.25-1.2.41增加了黑名单限制,…...
格式化字符串漏洞(Format String Vulnerability)
格式化字符串漏洞(Format String Vulnerability)是程序中因不当处理格式化字符串参数而导致的一类安全漏洞,常被攻击者利用来读取内存数据、篡改程序执行流程,甚至执行任意代码。以下是对其原理、利用方式及防御措施的详细解析&am…...
C++--iomanip库
目录 1. 设置字段宽度:std::setw() 2. 设置浮点数精度:std::setprecision() 3. 设置填充字符:std::setfill() 4. 控制对齐方式:std::left 和 std::right,std::internal 5. 控制进制输出:std::hex、std…...

Redis 集群原理、主从复制和哨兵模式的详细讲解
引言:本文记录了博主在学习Redis的过程中的原理,了解为什么使用与怎么样使用 Redis 集群,在使用 Redis 集群时出现的主从复制和哨兵模式的相关知识。本文并不涉及Redis安装。 文章目录 一、简单介绍什么是 Redis二、为什么要使用 Redis 集群三…...

基于Java的远程视频会议系统(源码+系统+论文)
第一章 概述 1.1 本课题的研究背景 随着人们对视频和音频信息的需求愈来愈强烈,追求远距离的视音频的同步交互成为新的时尚。近些年来,依托计算机技术、通信技术和网络条件的发展,集音频、视频、图像、文字、数据为一体的多媒体信息ÿ…...
springboot 事务管理
在Spring Boot中,事务管理是通过Spring框架的事务管理模块来实现的。Spring提供了声明式事务管理和编程式事务管理两种方式。通常,我们使用声明式事务管理,因为它更简洁且易于维护。 1. 声明式事务管理 声明式事务管理是通过注解来实现的。…...
深度学习-神经机器翻译模型
以下为你介绍使用Python和深度学习框架Keras(基于TensorFlow后端)实现一个简单的神经机器翻译模型的详细步骤和代码示例,该示例主要处理英 - 法翻译任务。 1. 安装必要的库 首先,确保你已经安装了以下库: pip insta…...

.NET周刊【2月第1期 2025-02-02】
国内文章 dotnet 9 已知问题 默认开启 CET 导致进程崩溃 https://www.cnblogs.com/lindexi/p/18700406 本文记录 dotnet 9 的一个已知且当前已修问题。默认开启 CET 导致一些模块执行时触发崩溃。 dotnet 使用 ColorCode 做代码着色器 https://www.cnblogs.com/lindexi/p/…...

【合集】Java进阶——Java深入学习的笔记汇总 amp; 再论面向对象、数据结构和算法、JVM底层、多线程
前言 spring作为主流的 Java Web 开发的开源框架,是Java 世界最为成功的框架,持续不断深入认识spring框架是Java程序员不变的追求;而spring的底层其实就是Java,因此,深入学习Spring和深入学习Java是硬币的正反面&…...

GPU、CUDA 和 cuDNN 学习研究【笔记】
分享自己在入门显存优化时看过的一些关于 GPU 和 CUDA 和 cuDNN 的网络资料。 更多内容见: Ubuntu 22.04 LTS 安装 PyTorch CUDA 深度学习环境-CSDN博客CUDA 计算平台 & CUDA 兼容性【笔记】-CSDN博客 文章目录 GPUCUDACUDA Toolkit都包含什么?NVID…...
【5】阿里面试题整理
[1]. 介绍一下ZooKeeper ZooKeeper是一个开源的分布式协调服务,核心功能是通过树形数据模型(ZNode)和Watch机制,解决分布式系统的一致性问题。 它使用ZAB协议保障数据一致性,典型场景包括分布式锁、配置管理和服务注…...

计算机毕业设计hadoop+spark+hive物流预测系统 物流大数据分析平台 物流信息爬虫 物流大数据 机器学习 深度学习
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...

Wpf美化按钮,输入框,下拉框,dataGrid
Wpf美化按钮,输入框,下拉框,dataGrid 引用代码后 引用资源 <ControlTemplate x:Key"CustomProgressBarTemplate" TargetType"ProgressBar"><Grid><Border x:Name"PART_Track" CornerRadius&q…...
搜索插入位置:二分查找的巧妙应用
问题描述 给定一个已排序的整数数组 nums 和一个目标值 target,要求在数组中找到目标值并返回其索引。如果目标值不存在于数组中,则返回它按顺序插入的位置。必须使用时间复杂度为 O(log n) 的算法。 示例: 示例1: 输入: nums …...
Cocos2d-x 游戏开发-打包apk被默认自带了很多不必要的权限导致apk被报毒,如何在Cocos 2d-x中强制去掉不必要的权限-优雅草卓伊凡
Cocos2d-x 游戏开发-打包apk被默认自带了很多不必要的权限导致apk被报毒,如何在Cocos 2d-x中强制去掉不必要的权限-优雅草卓伊凡 实战操作 去除权限 要在 Cocos2d-x 开发的游戏中去掉 APK 自带权限,可以按照以下步骤操作: 编辑 AndroidMa…...

Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...