深度学习-神经机器翻译模型
以下为你介绍使用Python和深度学习框架Keras(基于TensorFlow后端)实现一个简单的神经机器翻译模型的详细步骤和代码示例,该示例主要处理英 - 法翻译任务。
1. 安装必要的库
首先,确保你已经安装了以下库:
pip install tensorflow keras numpy pandas
2. 代码实现
import numpy as np
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, LSTM, Dense# 示例数据,实际应用中应使用大规模数据集
english_sentences = ['I am a student', 'He likes reading books', 'She is very beautiful']
french_sentences = ['Je suis un étudiant', 'Il aime lire des livres', 'Elle est très belle']# 对输入和目标文本进行分词处理
input_tokenizer = Tokenizer()
input_tokenizer.fit_on_texts(english_sentences)
input_sequences = input_tokenizer.texts_to_sequences(english_sentences)target_tokenizer = Tokenizer()
target_tokenizer.fit_on_texts(french_sentences)
target_sequences = target_tokenizer.texts_to_sequences(french_sentences)# 获取输入和目标词汇表的大小
input_vocab_size = len(input_tokenizer.word_index) + 1
target_vocab_size = len(target_tokenizer.word_index) + 1# 填充序列以确保所有序列长度一致
max_input_length = max([len(seq) for seq in input_sequences])
max_target_length = max([len(seq) for seq in target_sequences])input_sequences = pad_sequences(input_sequences, maxlen=max_input_length, padding='post')
target_sequences = pad_sequences(target_sequences, maxlen=max_target_length, padding='post')# 定义编码器模型
encoder_inputs = Input(shape=(max_input_length,))
encoder_embedding = Dense(256)(encoder_inputs)
encoder_lstm = LSTM(256, return_state=True)
_, state_h, state_c = encoder_lstm(encoder_embedding)
encoder_states = [state_h, state_c]# 定义解码器模型
decoder_inputs = Input(shape=(max_target_length,))
decoder_embedding = Dense(256)(decoder_inputs)
decoder_lstm = LSTM(256, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_embedding, initial_state=encoder_states)
decoder_dense = Dense(target_vocab_size, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)# 定义完整的模型
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)# 编译模型
model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy')# 训练模型
model.fit([input_sequences, target_sequences[:, :-1]], target_sequences[:, 1:],epochs=100, batch_size=1)# 定义编码器推理模型
encoder_model = Model(encoder_inputs, encoder_states)# 定义解码器推理模型
decoder_state_input_h = Input(shape=(256,))
decoder_state_input_c = Input(shape=(256,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(decoder_embedding, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model([decoder_inputs] + decoder_states_inputs,[decoder_outputs] + decoder_states)# 实现翻译函数
def translate_sentence(input_seq):states_value = encoder_model.predict(input_seq)target_seq = np.zeros((1, 1))target_seq[0, 0] = target_tokenizer.word_index['<start>'] # 假设存在 <start> 标记stop_condition = Falsedecoded_sentence = ''while not stop_condition:output_tokens, h, c = decoder_model.predict([target_seq] + states_value)sampled_token_index = np.argmax(output_tokens[0, -1, :])sampled_word = target_tokenizer.index_word[sampled_token_index]decoded_sentence += ' ' + sampled_wordif (sampled_word == '<end>' orlen(decoded_sentence) > max_target_length):stop_condition = Truetarget_seq = np.zeros((1, 1))target_seq[0, 0] = sampled_token_indexstates_value = [h, c]return decoded_sentence# 测试翻译
test_input = input_tokenizer.texts_to_sequences(['I am a student'])
test_input = pad_sequences(test_input, maxlen=max_input_length, padding='post')
translation = translate_sentence(test_input)
print("Translation:", translation)
3. 代码解释
- 数据预处理:使用
Tokenizer对英文和法文句子进行分词处理,将文本转换为数字序列。然后使用pad_sequences对序列进行填充,使所有序列长度一致。 - 模型构建:
- 编码器:使用LSTM层处理输入序列,并返回隐藏状态和单元状态。
- 解码器:以编码器的状态作为初始状态,使用LSTM层生成目标序列。
- 全连接层:将解码器的输出通过全连接层转换为目标词汇表上的概率分布。
- 模型训练:使用
fit方法对模型进行训练,训练时使用编码器输入和部分解码器输入来预测解码器的下一个输出。 - 推理阶段:分别定义编码器推理模型和解码器推理模型,通过迭代的方式生成翻译结果。
4. 注意事项
- 此示例使用的是简单的示例数据,实际应用中需要使用大规模的平行语料库,如WMT数据集等。
- 可以进一步优化模型,如使用注意力机制、更复杂的网络结构等,以提高翻译质量。
相关文章:
深度学习-神经机器翻译模型
以下为你介绍使用Python和深度学习框架Keras(基于TensorFlow后端)实现一个简单的神经机器翻译模型的详细步骤和代码示例,该示例主要处理英 - 法翻译任务。 1. 安装必要的库 首先,确保你已经安装了以下库: pip insta…...
.NET周刊【2月第1期 2025-02-02】
国内文章 dotnet 9 已知问题 默认开启 CET 导致进程崩溃 https://www.cnblogs.com/lindexi/p/18700406 本文记录 dotnet 9 的一个已知且当前已修问题。默认开启 CET 导致一些模块执行时触发崩溃。 dotnet 使用 ColorCode 做代码着色器 https://www.cnblogs.com/lindexi/p/…...
【合集】Java进阶——Java深入学习的笔记汇总 amp; 再论面向对象、数据结构和算法、JVM底层、多线程
前言 spring作为主流的 Java Web 开发的开源框架,是Java 世界最为成功的框架,持续不断深入认识spring框架是Java程序员不变的追求;而spring的底层其实就是Java,因此,深入学习Spring和深入学习Java是硬币的正反面&…...
GPU、CUDA 和 cuDNN 学习研究【笔记】
分享自己在入门显存优化时看过的一些关于 GPU 和 CUDA 和 cuDNN 的网络资料。 更多内容见: Ubuntu 22.04 LTS 安装 PyTorch CUDA 深度学习环境-CSDN博客CUDA 计算平台 & CUDA 兼容性【笔记】-CSDN博客 文章目录 GPUCUDACUDA Toolkit都包含什么?NVID…...
【5】阿里面试题整理
[1]. 介绍一下ZooKeeper ZooKeeper是一个开源的分布式协调服务,核心功能是通过树形数据模型(ZNode)和Watch机制,解决分布式系统的一致性问题。 它使用ZAB协议保障数据一致性,典型场景包括分布式锁、配置管理和服务注…...
计算机毕业设计hadoop+spark+hive物流预测系统 物流大数据分析平台 物流信息爬虫 物流大数据 机器学习 深度学习
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...
Wpf美化按钮,输入框,下拉框,dataGrid
Wpf美化按钮,输入框,下拉框,dataGrid 引用代码后 引用资源 <ControlTemplate x:Key"CustomProgressBarTemplate" TargetType"ProgressBar"><Grid><Border x:Name"PART_Track" CornerRadius&q…...
搜索插入位置:二分查找的巧妙应用
问题描述 给定一个已排序的整数数组 nums 和一个目标值 target,要求在数组中找到目标值并返回其索引。如果目标值不存在于数组中,则返回它按顺序插入的位置。必须使用时间复杂度为 O(log n) 的算法。 示例: 示例1: 输入: nums …...
Cocos2d-x 游戏开发-打包apk被默认自带了很多不必要的权限导致apk被报毒,如何在Cocos 2d-x中强制去掉不必要的权限-优雅草卓伊凡
Cocos2d-x 游戏开发-打包apk被默认自带了很多不必要的权限导致apk被报毒,如何在Cocos 2d-x中强制去掉不必要的权限-优雅草卓伊凡 实战操作 去除权限 要在 Cocos2d-x 开发的游戏中去掉 APK 自带权限,可以按照以下步骤操作: 编辑 AndroidMa…...
自动化xpath定位元素(附几款浏览器xpath插件)
在 Web 自动化测试、数据采集、前端调试中,XPath 仍然是不可或缺的技能。虽然 CSS 选择器越来越强大,但面对复杂 DOM 结构时,XPath 仍然更具灵活性。因此,掌握 XPath,不仅能提高自动化测试的稳定性,还能在爬…...
String类(6)
大家好,今天我们继续来学习一下String类的查找方法,主要是反向查找的一些方法。 ⭐️从后往前找一样的道理,如果找到了就返回对应字符的下标. 如果后面有对应的字符,则会返回第一个遇到的字符下标. ⭐️注意一下传入字符串的找法…...
动态表格html
题目: 要求: 1.表格由专业班级学号1-10号同学的信息组成,包括:学号、姓 名、性别、二级学院、班级、专业、辅导员; 2.表格的奇数行字体为黑色,底色为白色;偶数行字体为白色,底 色为黑…...
ZU47DR 100G光纤 高性能板卡
简介 2347DR是一款最大可提供8路ADC接收和8路DAC发射通道的高性能板卡。板卡选用高性价比的Xilinx的Zynq UltraScale RFSoC系列中XCZU47DR-FFVE1156作为处理芯片(管脚可以兼容XCZU48DR-FFVE1156,主要差别在有无FEC(信道纠错编解码࿰…...
mysql8.0使用pxc实现高可用
环境准备 准备三台虚拟机,其对应的主机名和IP地址为 pxc-1192.168.190.129pxc-2192.168.190.133pxc-3192.168.190.134 解析,都要做解析 测试 下载pxc的安装包, 官网:https://www.percona.com/downloads 选择8.0的版本并下载,…...
Kotlin 使用 Chrome 无头浏览器
1. 概念 无头浏览器在类似于流行网络浏览器的环境中提供对网页的自动控制,但是通过命令行界面或使用网络通信来执行。 它们对于测试网页特别有用,因为它们能够像浏览器一样呈现和理解超文本标记语言,包括页面布局、颜色、字体选择以及JavaSc…...
Arbess基础教程-创建流水线
Arbess(谐音阿尔卑斯) 是一款开源免费的 CI/CD 工具,本文将介绍如何使用 Arbess 配置你的第一条流水线,以快速入门上手。 1. 创建流水线 根据不同需求来创建不同的流水线。 1.1 配置基本信息 配置流水线的基本信息,如分组,环境&…...
vscode安装ESP-IDF
引言 ESP-IDF(Espressif IoT Development Framework)是乐鑫官方为其 ESP32、ESP32-S 系列等芯片提供的物联网开发框架。结合 Visual Studio Code(VSCode)这一强大的开源代码编辑器,能极大提升开发效率。本教程将详细介…...
第31周:文献阅读
目录 摘要 Abstract 文献阅读 问题引入 研究背景 研究动机 创新点 动态预训练方法(DynPT) 深度循环神经网络(DRNN) 传感器选择 方法论 时间序列的动态预训练 异构传感器数据的DRNN 基于稀疏度的传感器过滤 实验研…...
GenAI + 电商:从单张图片生成可动态模拟的3D服装
在当今数字化时代,电子商务和虚拟现实技术的结合正在改变人们的购物体验。特别是在服装行业,消费者越来越期待能够通过虚拟试衣来预览衣服的效果,而无需实际穿戴。Dress-1-to-3 技术框架正是为此而生,它利用生成式AI模型(GenAI)和物理模拟技术,将一张普通的穿衣照片转化…...
进程(1)
1.什么是进程 要回答这个问题首先我们要解答什么是程序的问题。什么是程序呢?程序本质是就是存放在磁盘上的文件。我们要运行程序,首先必须要将其加载到内存中,这样才能与cpu交互,这是冯诺依曼体系架构所决定的。 程序运行起来后…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
