Cherry Studio:一站式多模型AI交互平台深度解析 可配合大模型搭建私有知识库问答系统
Cherry Studio:一站式多模型AI交互平台深度解析
可配合大模型搭建私有知识库问答系统
大模型本地化部署流程可查看文章 3分钟教你搭建属于自己的本地大模型 DeepSeek
Cherry Studio地址:https://cherry-ai.com/download

Cherry Studio 简介
Cherry Studio 是一款跨平台的多模型 AI 客户端,支持 Windows、macOS 和 Linux 系统,未来还将扩展至移动端。它以集成全球主流大语言模型(如 OpenAI、DeepSeek、Anthropic 等)为核心,结合本地模型(通过 Ollama)与 RAG 知识库技术,为用户提供从文本生成、代码编程到复杂数据分析的全场景 AI 服务。其开源特性(GitHub 可获取源码)与高度可定制化设计,使其成为开发者、设计师及普通用户的效率利器。
核心功能亮点
1. 多模型支持与灵活切换
Cherry Studio 集成了超过 300 个大语言模型,覆盖 OpenAI 的自然语言处理、DeepSeek-R1 的高性价比推理、SiliconFlow 的免费模型等。用户可根据任务需求自由切换模型,例如:
DeepSeek-R1:基于混合专家(MoE)架构的 6710 亿参数开源模型,擅长代码生成与数学推理,性能媲美 GPT-4o,但成本更低。
本地模型部署:通过 Ollama 支持本地运行,确保隐私与离线场景使用。
2. AI 助手与多模态交互
预配置助手库:内置 300+ 预配置助手,覆盖写作、编程、翻译等领域,例如法律文档生成助手、多语言翻译工具等。
自定义助手:用户可定义角色、语气与功能模板,例如设定“技术文档撰写专家”或“创意故事生成器”。
多模型并行对话:支持同时与多个模型交互,对比输出结果以优化决策。
3. RAG 知识库增强问答
通过检索增强生成(RAG)技术,Cherry Studio 将外部知识库与大模型结合,显著提升回答准确性与实用性:
多源数据整合:支持上传 PDF、DOCX、网页链接等,构建专属知识库。
语义检索优化:使用 BGE-M3 等嵌入模型实现高效向量检索,减少模型“幻觉”,尤其适用于法律、医疗等专业领域5。
实时更新:用户可随时上传最新数据,确保模型回答基于最新信息。
4. 生产力工具集成
文档处理:支持 Markdown 渲染、代码语法高亮、Mermaid 流程图可视化,满足技术文档编写需求。
全局搜索与主题管理:快速定位文件与工具,支持亮/暗主题切换及透明窗口设计。
AI 翻译与 WebDAV 同步:内置实时多语言翻译,结合云端文件管理提升协作效率。
实战应用场景
1. 开发者高效编程
代码生成与调试:利用 DeepSeek-V3 的代码能力生成 Python 脚本,并通过多模型对比优化逻辑。
文档自动化:结合 RAG 知识库生成 API 接口文档,引用企业内部的代码规范文件作为数据源。
2. 内容创作者赋能
多语言内容生产:调用 AI 翻译工具生成双语稿件,并通过预配置助手优化文案风格9。
创意灵感激发:使用多模型并行对话功能,获取不同角度的故事构思或营销方案。
3. 企业知识管理
智能问答系统:上传内部培训资料构建知识库,员工可通过自然语言提问快速获取产品信息或流程指南。
数据安全与隐私:本地模型部署确保敏感数据不外流,适合金融、医疗等行业。
快速上手指南
注册与配置
注册 DeepSeek 和 SiliconFlow 账号,获取 API 密钥(分别赠送 500 万和 2000 万 token)。
SiliconFlow 可使用海量大模型 地址 https://cloud.siliconflow.cn/i/FrfQv8wY
可填写邀请码:FrfQv8wY 获取2000万token
在 Cherry Studio 中填入 API 地址与密钥,添加自定义模型(如 DeepSeek-R1)。
构建知识库
上传企业文档或网页链接,选择 BGE-M3 嵌入模型优化检索效果。
在对话界面绑定知识库,实现基于文档的精准问答。
模型协作示例
场景:技术博客撰写
步骤:
- 调用 OpenAI 生成初稿,使用 DeepSeek-R1 优化代码示例。
- 通过 RAG 知识库插入最新行业数据,提升内容权威性。
总结
Cherry Studio 凭借其多模型整合能力、RAG 知识库与生产力工具,重新定义了 AI 交互的边界。无论是个人用户的高效创作,还是企业的智能化升级,均可从中受益。未来,随着移动端支持与更多模型接入,其作为“AI 操作系统”的潜力将进一步释放。
立即体验:
官网下载:https://cherry-ai.com
GitHub 开源地址:https://github.com/kangfenmao/cherry-studio
相关文章:
Cherry Studio:一站式多模型AI交互平台深度解析 可配合大模型搭建私有知识库问答系统
Cherry Studio:一站式多模型AI交互平台深度解析 可配合大模型搭建私有知识库问答系统 大模型本地化部署流程可查看文章 3分钟教你搭建属于自己的本地大模型 DeepSeek Cherry Studio地址:https://cherry-ai.com/download Cherry Studio 简介 Cherry S…...
工业相机,镜头的选型及实战
工业相机和镜头的选型是机器视觉系统中的关键步骤,选型不当可能导致成像质量差或系统性能不达标。(用于个人的学习和记录) 一、工业相机选型方法 确定分辨率 分辨率需求:根据被测物体的尺寸和检测精度要求计算所需分辨率。 公式…...
C++模板学习从专家到入门:关键字typename与class
文章目录 共同点typename特性class特性 共同点 在定义类模板或者函数模板时,typename 和 class 关键字都可以用于指定模板参数中的类型。 template <class T> template <typename T>typename特性 C 允许在类内定义类型别名,且其使用方法与…...
BFS算法篇——FloodFill问题的高效解决之道(下)
文章目录 前言一. 图像渲染1.1 题目链接:https://leetcode.cn/problems/flood-fill/description/1.2 题目分析:1.3 思路讲解:1.4 代码实现: 二. 岛屿数量2.1 题目链接:https://leetcode.cn/problems/number-of-islands…...
Android性能优化
Android性能优化 如何优化一个包含大量图片加载的Android应用,以提高性能和用户体验? 优化一个包含大量图片加载的Android应用,可以从以下几个方面入手,以提高性能和用户体验: 选择合适的图片加载库 使用成熟的图片…...
1、http介绍
一、HTTP 和 HTTPS 简介 HTTP(HyperText Transfer Protocol) 用途:用于网页数据传输(不加密)。协议特性:以明文形式传输数据,默认端口 80,无身份验证和完整性保护。典型场景…...
2.6 寒假训练营补题
C Tokitsukaze and Balance String (hard) 题目描述 本题为《Tokitsukaze and Balance String (easy)》的困难版本,两题的唯一区别在于 n n n 的范围。 一个字符串是平衡的,当且仅当字符串中 "01" 连续子串的个数与 "10" 连续子…...
kafka生产者之发送模式与ACK
文章目录 Kafka的发送模式Kafka的ack机制发送模式与ack的关联重试次数总结 在Kafka中,发送模式与ack机制紧密相关,它们共同影响着消息发送的可靠性和性能。 Kafka的发送模式 发后即忘(Fire and Forget):生产者发送消息…...
笔记:蓝桥杯python搜索(3-2)——DFS剪支和记忆化搜索
目录 一、DFS剪支 二、例题 P2942 数字王国之军训军队 P3075 特殊的多边形 三、记忆化搜索 四、例题 例题 P3820 混境之地 P216 地宫取宝 一、DFS剪支 在搜索过程中,如果需要完全遍历所有情况可能需要很多时间在搜索到某种状态时,根据当前状态判断…...
ChatBox+硅基流动Deepseek_R1开源API 满血(671B)部署教程,全程干货无废话
DeepSeek开源深度推理模型火爆发布,网络流量过大经常导致服务器崩溃,所以一般有两种方法解决这个问题 如果你的硬件支持,或者保密文档,保密单位,那么可以部署在本地端。但是再好的电脑也不能让DS满血复活,…...
35~37.ppt
目录 35.张秘书-《会计行业中长期人才发展规划》 题目 解析 36.颐和园公园(25张PPT) 题目 解析 37.颐和园公园(22张PPT) 题目 解析 35.张秘书-《会计行业中长期人才发展规划》 题目 解析 插入自定义的幻灯片:新建幻灯片→重用…...
畅快使用DeepSeek-R1的方法
腾讯云API接入Cherry Studio简明指南-畅快使用DeepSeek-R1 注意:腾讯云API针对deepseek限时免费(后续即使收费也较为便宜,可以作为长期使用的方法),并且比华为的API要快不少。 一、获取腾讯云API密钥 登录并进入腾讯…...
【人工智能】Python中的序列到序列(Seq2Seq)模型:实现机器翻译
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 序列到序列(Seq2Seq)模型是自然语言处理(NLP)中一项核心技术,广泛应用于机器翻译、语音识别、文本摘要等任务。本文深入探讨Seq2Seq模…...
【算法】动态规划专题⑥ —— 完全背包问题 python
目录 前置知识进入正题模板 前置知识 【算法】动态规划专题⑤ —— 0-1背包问题 滚动数组优化 完全背包问题是动态规划中的一种经典问题,它与0-1背包问题相似,但有一个关键的区别:在完全背包问题中,每种物品都有无限的数量可用。…...
记一次基于manifest v3开发谷歌插件
背景 头疼在国际化功能普遍的前端项目中,如果你在处理或者在某一块功能上新增一些需求的时候,在没有国际化功能的页面中,我们随便复制一些文本,然后在vs code中全局搜索,很快就可以找到所要更改的代码文件在哪里&…...
C# OpenCvSharp 部署MOWA:多合一图像扭曲模型
目录 说明 效果 项目 代码 下载 参考 C# OpenCvSharp 部署MOWA:多合一图像扭曲模型 说明 算法模型的paper名称是《MOWA: Multiple-in-One Image Warping Model》 ariv链接 https://arxiv.org/pdf/2404.10716 效果 Stitched Image 翻译成中文意思是&…...
本地部署DeepSeek-R1模型(新手保姆教程)
背景 最近deepseek太火了,无数的媒体都在报道,很多人争相着想本地部署试验一下。本文就简单教学一下,怎么本地部署。 首先大家要知道,使用deepseek有三种方式: 1.网页端或者是手机app直接使用 2.使用代码调用API …...
神经网络常见激活函数 5-PReLU函数
文章目录 PReLU函数导函数函数和导函数图像优缺点pytorch中的PReLU函数tensorflow 中的PReLU函数 PReLU 参数化修正线性单元:Parametric ReLU 函数导函数 PReLU函数 P R e L U { x x > 0 α x x < 0 ( α 是可训练参数 ) \rm PReLU \left\{ \begin{array}{} x \qua…...
2025我的第二次社招,写在春招之季
先说一个好消息,C那些事 4w star了! 前面断更了一个月,本篇文章就可以看到原因,哈哈。 大家好,我叫光城,腾讯实习转正做后端开发,后去小公司做数据库内核,经过这几年的成长与积累&am…...
Visual Studio Code中文出现黄色框子的解决办法
Visual Studio Code中文出现黄色框子的解决办法 一、vsCode中文出现黄色框子-如图二、解决办法 一、vsCode中文出现黄色框子-如图 二、解决办法 点击 “文件”点击 “首选项”点击 “设置” 搜索框直接搜索unicode选择“文本编辑器”,往下滑动,找到“Un…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
如何配置一个sql server使得其它用户可以通过excel odbc获取数据
要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据,你需要完成以下配置步骤: ✅ 一、在 SQL Server 端配置(服务器设置) 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到:SQL Server 网络配…...
全面解析数据库:从基础概念到前沿应用
在数字化时代,数据已成为企业和社会发展的核心资产,而数据库作为存储、管理和处理数据的关键工具,在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理,到社交网络的用户数据存储,再到金融行业的交易记录处理&a…...
聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇
根据 QYResearch 发布的市场报告显示,全球市场规模预计在 2031 年达到 9848 万美元,2025 - 2031 年期间年复合增长率(CAGR)为 3.7%。在竞争格局上,市场集中度较高,2024 年全球前十强厂商占据约 74.0% 的市场…...
【51单片机】4. 模块化编程与LCD1602Debug
1. 什么是模块化编程 传统编程会将所有函数放在main.c中,如果使用的模块多,一个文件内会有很多代码,不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里,在.h文件里提供外部可调用函数声明,其他.c文…...
