【练习】PAT 乙 1074 宇宙无敌加法器
题目
地球人习惯使用十进制数,并且默认一个数字的每一位都是十进制的。而在PAT星人开挂的世界里,每个数字的每一位都是不同进制的,这种神奇的数字称为“PAT数”。每个PAT星人都必须熟记各位数字的进制表,例如“……0527”就表示最低位是7进制数、第2位是2进制数、第3位是5进制数、第4位是10进制数,等等。每一位的进制d或者是0(表示十进制)、或者是[2,9]区间内的整数。理论上这个进制表应该包含无穷多位数字,但从实际应用出发,PAT星人通常只需要记住前20位就够用了,以后各位默认为10进制。
在这样的数字系统中,即使是简单的加法运算也变得不简单。例如对应进制表“0527”,该如何计算“6203+415”呢?我们得首先计算最低位:3+5=8;因为最低位是7进制的,所以我们得到1和1个进位。第2位是:0+1+1(进位)=2;因为此位是2进制的,所以我们得到0和1个进位。第3位是:2+4+1(进位)=7;因为此位是5进制的,所以我们得到2和1个进位。第4位是:6+1(进位)=7;因为此位是10进制的,所以我们就得到7。最后我们得到:6203+415=7201。
输入格式:
输入首先在第一行给出一个N位的进制表(0 < N <=20),以回车结束。 随后两行,每行给出一个不超过N位的正的PAT数。
输出格式:
在一行中输出两个PAT数之和。
输入样例:
30527
06203
415
输出样例:
7201
来源:PAT 乙 1074 宇宙无敌加法器
思路(注意事项)
- 注意:可能会有最后一个进位,不要漏掉!
纯代码
#include<bits/stdc++.h>
using namespace std;int main()
{string a, b, c;cin >> a >> b >> c;int n = a.size();vector<int> A(n), B(n), C(n), D;for (int i = a.size() - 1; i >= 0; i --) A[a.size() - i - 1] = a[i] - '0';for (int i = b.size() - 1; i >= 0; i --) B[b.size() - i - 1] = b[i] - '0'; for (int i = c.size() - 1; i >= 0; i --) C[c.size() - i - 1] = c[i] - '0'; int t = 0;for(int i = 0; i < n; i ++){if (B[i] + C[i] + t >= A[i] && A[i] != 0){D.push_back(B[i] + C[i] + t - A[i]);t = (B[i] + C[i] + t) / A[i];}else if (A[i] == 0 && B[i] + C[i] + t >= 10){D.push_back(B[i] + C[i] + t - 10);t = (B[i] + C[i] + t) / 10;}else{D.push_back(B[i] + C[i] + t);t = 0;}}if (t > 0) D.push_back(t);while (D.size() > 1 && D.back() == 0) D.pop_back();reverse (D.begin(), D.end());for (int i = 0; i < D.size(); i ++ ) cout << D[i];return 0;
}
题解(加注释)
#include<bits/stdc++.h>
using namespace std;int main() {string a, b, c;cin >> a >> b >> c; // 输入三个字符串 a, b, cint n = a.size(); // 获取 a 的长度vector<int> A(n), B(n), C(n), D; // 定义数组 A, B, C 存储逆序数字,D 存储结果// 将字符串 a 逆序存储到数组 A 中for (int i = a.size() - 1; i >= 0; i--) A[a.size() - i - 1] = a[i] - '0';// 将字符串 b 逆序存储到数组 B 中for (int i = b.size() - 1; i >= 0; i--) B[b.size() - i - 1] = b[i] - '0';// 将字符串 c 逆序存储到数组 C 中for (int i = c.size() - 1; i >= 0; i--) C[c.size() - i - 1] = c[i] - '0';int t = 0; // 进位标志for (int i = 0; i < n; i++) {if (B[i] + C[i] + t >= A[i] && A[i] != 0) { // 如果 B[i] + C[i] + t >= A[i] 且 A[i] 不为 0D.push_back(B[i] + C[i] + t - A[i]); // 将差值存入结果数组 Dt = (B[i] + C[i] + t) / A[i]; // 更新进位} else if (A[i] == 0 && B[i] + C[i] + t >= 10) { //处理进制为10的情况D.push_back(B[i] + C[i] + t - 10); // 将差值存入结果数组 Dt = (B[i] + C[i] + t) / 10; // 更新进位} else {// 其他情况D.push_back(B[i] + C[i] + t); // 将和存入结果数组 Dt = 0; // 重置进位}}// 如果最后还有进位,将进位存入结果数组 Dif (t > 0) D.push_back(t);// 去掉结果中的前导零while (D.size() > 1 && D.back() == 0) D.pop_back();// 将结果数组 D 反转,恢复从高位到低位的顺序reverse(D.begin(), D.end());// 输出结果for (int i = 0; i < D.size(); i++) cout << D[i];return 0;
}
相关文章:
【练习】PAT 乙 1074 宇宙无敌加法器
题目 地球人习惯使用十进制数,并且默认一个数字的每一位都是十进制的。而在PAT星人开挂的世界里,每个数字的每一位都是不同进制的,这种神奇的数字称为“PAT数”。每个PAT星人都必须熟记各位数字的进制表,例如“……0527”就表示最…...
网络防御高级02-综合实验
web页面: [FW]interface GigabitEthernet 0/0/0 [FW-GigabitEthernet0/0/0]service-manage all permit 需求一,接口配置: SW2: [Huawei]sysname SW2 1.创建vlan [sw2]vlan 10 [sw2]vlan 20 2.接口配置 [sw2]interface GigabitEther…...
UITableView的复用原理
UITableView复用的基本原理是Cell复用机制,它通过重用已经创建的Cell来减少内存开始并提高性能,避免频繁创建和销毁Cell。 复用的流程 1.队列管理 UITableView维护一个可复用队列(reuse queue),存储离屏的UITableVi…...
SQL条件分支中的大讲究
在SQL中,条件分支用于根据不同的条件执行不同的操作,适用于数据查询、数据更新以及存储过程等场景。合理使用SQL条件分支,可以优化数据操作流程,提高代码的可读性和可维护性。 目录 1. 逻辑判断的基本概念 2. CASE 语句…...
Cherry Studio:一站式多模型AI交互平台深度解析 可配合大模型搭建私有知识库问答系统
Cherry Studio:一站式多模型AI交互平台深度解析 可配合大模型搭建私有知识库问答系统 大模型本地化部署流程可查看文章 3分钟教你搭建属于自己的本地大模型 DeepSeek Cherry Studio地址:https://cherry-ai.com/download Cherry Studio 简介 Cherry S…...
工业相机,镜头的选型及实战
工业相机和镜头的选型是机器视觉系统中的关键步骤,选型不当可能导致成像质量差或系统性能不达标。(用于个人的学习和记录) 一、工业相机选型方法 确定分辨率 分辨率需求:根据被测物体的尺寸和检测精度要求计算所需分辨率。 公式…...
C++模板学习从专家到入门:关键字typename与class
文章目录 共同点typename特性class特性 共同点 在定义类模板或者函数模板时,typename 和 class 关键字都可以用于指定模板参数中的类型。 template <class T> template <typename T>typename特性 C 允许在类内定义类型别名,且其使用方法与…...
BFS算法篇——FloodFill问题的高效解决之道(下)
文章目录 前言一. 图像渲染1.1 题目链接:https://leetcode.cn/problems/flood-fill/description/1.2 题目分析:1.3 思路讲解:1.4 代码实现: 二. 岛屿数量2.1 题目链接:https://leetcode.cn/problems/number-of-islands…...
Android性能优化
Android性能优化 如何优化一个包含大量图片加载的Android应用,以提高性能和用户体验? 优化一个包含大量图片加载的Android应用,可以从以下几个方面入手,以提高性能和用户体验: 选择合适的图片加载库 使用成熟的图片…...
1、http介绍
一、HTTP 和 HTTPS 简介 HTTP(HyperText Transfer Protocol) 用途:用于网页数据传输(不加密)。协议特性:以明文形式传输数据,默认端口 80,无身份验证和完整性保护。典型场景…...
2.6 寒假训练营补题
C Tokitsukaze and Balance String (hard) 题目描述 本题为《Tokitsukaze and Balance String (easy)》的困难版本,两题的唯一区别在于 n n n 的范围。 一个字符串是平衡的,当且仅当字符串中 "01" 连续子串的个数与 "10" 连续子…...
kafka生产者之发送模式与ACK
文章目录 Kafka的发送模式Kafka的ack机制发送模式与ack的关联重试次数总结 在Kafka中,发送模式与ack机制紧密相关,它们共同影响着消息发送的可靠性和性能。 Kafka的发送模式 发后即忘(Fire and Forget):生产者发送消息…...
笔记:蓝桥杯python搜索(3-2)——DFS剪支和记忆化搜索
目录 一、DFS剪支 二、例题 P2942 数字王国之军训军队 P3075 特殊的多边形 三、记忆化搜索 四、例题 例题 P3820 混境之地 P216 地宫取宝 一、DFS剪支 在搜索过程中,如果需要完全遍历所有情况可能需要很多时间在搜索到某种状态时,根据当前状态判断…...
ChatBox+硅基流动Deepseek_R1开源API 满血(671B)部署教程,全程干货无废话
DeepSeek开源深度推理模型火爆发布,网络流量过大经常导致服务器崩溃,所以一般有两种方法解决这个问题 如果你的硬件支持,或者保密文档,保密单位,那么可以部署在本地端。但是再好的电脑也不能让DS满血复活,…...
35~37.ppt
目录 35.张秘书-《会计行业中长期人才发展规划》 题目 解析 36.颐和园公园(25张PPT) 题目 解析 37.颐和园公园(22张PPT) 题目 解析 35.张秘书-《会计行业中长期人才发展规划》 题目 解析 插入自定义的幻灯片:新建幻灯片→重用…...
畅快使用DeepSeek-R1的方法
腾讯云API接入Cherry Studio简明指南-畅快使用DeepSeek-R1 注意:腾讯云API针对deepseek限时免费(后续即使收费也较为便宜,可以作为长期使用的方法),并且比华为的API要快不少。 一、获取腾讯云API密钥 登录并进入腾讯…...
【人工智能】Python中的序列到序列(Seq2Seq)模型:实现机器翻译
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 序列到序列(Seq2Seq)模型是自然语言处理(NLP)中一项核心技术,广泛应用于机器翻译、语音识别、文本摘要等任务。本文深入探讨Seq2Seq模…...
【算法】动态规划专题⑥ —— 完全背包问题 python
目录 前置知识进入正题模板 前置知识 【算法】动态规划专题⑤ —— 0-1背包问题 滚动数组优化 完全背包问题是动态规划中的一种经典问题,它与0-1背包问题相似,但有一个关键的区别:在完全背包问题中,每种物品都有无限的数量可用。…...
记一次基于manifest v3开发谷歌插件
背景 头疼在国际化功能普遍的前端项目中,如果你在处理或者在某一块功能上新增一些需求的时候,在没有国际化功能的页面中,我们随便复制一些文本,然后在vs code中全局搜索,很快就可以找到所要更改的代码文件在哪里&…...
C# OpenCvSharp 部署MOWA:多合一图像扭曲模型
目录 说明 效果 项目 代码 下载 参考 C# OpenCvSharp 部署MOWA:多合一图像扭曲模型 说明 算法模型的paper名称是《MOWA: Multiple-in-One Image Warping Model》 ariv链接 https://arxiv.org/pdf/2404.10716 效果 Stitched Image 翻译成中文意思是&…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
鸿蒙HarmonyOS 5军旗小游戏实现指南
1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发,采用DevEco Studio实现,包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...
